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ABSTRACT

In this work, a novel rank-revealing matrix decomposition algorithm
termed Compressed Randomized UTV (CoR-UTV) decomposition
along with a CoR-UTV variant aided by the power method technique
is proposed. CoR-UTV computes an approximation to a low-rank
input matrix by making use of random sampling schemes. Given a
large and dense matrix of size m x n with numerical rank k, where
k < min{m, n}, CoR-UTV requires a few passes over the data, and
runs in O(mnk) floating-point operations. Furthermore, CoR-UTV
can exploit modern computational platforms and can be optimized
for maximum efficiency. CoR-UTV is also applied for solving robust
principal component analysis problems. Simulations show that CoR-
UTV outperform existing approaches.

Index Terms— Rank-revealing decompositions, low-rank ap-
proximations, randomized algorithms, robust PCA.

1. INTRODUCTION

Low-rank matrix approximations play an increasingly important role
in signal processing and its applications. Such compact representa-
tions which retain the key features of a high-dimensional matrix pro-
vide a significant reduction in memory requirements, and more im-
portantly, computational costs when the latter scales, e.g., according
to a high-degree polynomial, with the dimensionality. Matrices with
low-rank structures have found many applications in background
subtraction [1, 2], system identification [3], IP network anomaly de-
tection [4, 5], latent variable graphical modeling [6], subspace clus-
tering [7, 8] and sensor and multichannel signal processing [9].
Singular value decomposition (SVD) [10] and the rank-revealing
QR (RRQR) decomposition [11,12] are among the most commonly
used algorithms for computing a low-rank approximation of a ma-
trix. On the other hand, a UTV decomposition [13] is a compromise
between the SVD and the RRQR decomposition with the virtues
of both: UTV (i) is more efficient than the SVD, and (ii) pro-
vides information on the numerical null space of the matrix [13].
Given a matrix A, the UTV algorithm computes a decomposition
A =UTVT, where U and V have orthonormal columns, and T
is triangular (either lower or upper triangular). These deterministic
algorithms, however, are computationally expensive for large data
sets. Furthermore, standard techniques for their computation are
challenging to parallelize in order to utilize advanced computer ar-
chitectures [14, 15]. Recently developed algorithms for low-rank
approximations based on random sampling schemes, however, have
been shown to be remarkably efficient, highly accurate and robust,
and are known to outperform existing algorithms in many practical
situations [14—17]. The power of randomized algorithms lies in that
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(i) they are computationally efficient, and (ii) their main operations
can be optimized for maximum efficiency on modern architectures.

This work presents a novel randomized rank-revealing method
termed compressed randomized UTV (CoR-UTV) decomposition.
Given a large and dense rank-k matrix A € R™*™, CoR-UTV com-
putes a low-rank approximation Acor of A such that

Acr =UTVT, 1)

where U and V have orthonormal columns, and T is triangular (ei-
ther lower or upper, whichever is preferred). CoR-UTV only re-
quires a few passes through data, for a matrix stored externally,
and runs in O(mnk) floating-point operations (flops). The opera-
tions of CoR-UTYV involve matrix-matrix multiplication, the QR and
RRQR decompositions. Due to recently developed Communication-
Avoiding QR algorithms [18-20], which can perform the computa-
tions with optimal/minimum communication costs, CoR-UTV can
be optimized for peak machine performance on modern architec-
tures. We illustrate, through numerical examples, that CoR-UTV
is rank-revealer and provides a highly accurate low-rank approxima-
tion to a given matrix. Furthermore, we apply CoR-UTYV to solve the
robust principal component analysis (robust PCA) problem [21,22],
i.e., to decompose a given matrix with grossly corrupted entries into
a low-rank matrix plus a sparse matrix of outliers.

The rest of this paper is structured as follows. In Section 2, we
introduce the mathematical model of the data and discuss related
works. In Section 3, we describe the proposed CoR-UTV method in
detail. In Section 4, we develop an algorithm for robust PCA using
CoR-UTV. In Section 5, we present and discuss simulation results
and conclusions are given in Section 6.

2. MATHEMATICAL MODEL AND RELATED WORKS

Given a matrix A € R™*"™, where m > n, with numerical rank k,
its SVD [10] is defined as:
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where Uy, € R™*, Uy € R™" % V, € R"* and V, €
R™ ™% have orthonormal columns, X € R*** and 3, €
R™*X"=k are diagonal matrices containing the singular values,
ie, X, = diag(o,...,0k) and Xo = diag(og+1,...,0n). A
can be written as A = Ay + Ao, where A, = UkEkaT., and
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Ao = UyXoV{. The SVD constructs the optimal rank-k approxi-
mation Ay to A, [10] i.e.,

A — Akll2 = ok,

3)
[A = Axllr = /o, +... + 07,

where ||-||2 and ||-||r denote the spectral norm and the Frobenius
norm, respectively. In this paper we focus on the matrix A defined.

The SVD is highly accurate for computing singular subspaces
and singular values. However, its computation is costly for large
data sets. Moreover, standard techniques for its computation are
challenging to parallelize in order to take advantage of modern pro-
cessors [14,15]. An economical version of the SVD is the partial
SVD based on Krylov subspace methods, such as the Lanczos and
Arnoldi algorithms, which constructs an approximate SVD of an in-
put matrix, for instance A, at a cost O(mnk). However, the par-
tial SVD suffers from two drawbacks: (i) it is numerically unsta-
ble [10, 23], and (ii) it does not lend itself to parallel implementa-
tions [14, 15], which makes it unsuitable for modern architectures.
Other approaches for low-rank matrix approximations include the
RRQR [11] and the UTV decompositions [13]. Even though the
QR with column pivoting (QRCP) and UTV decompositions provide
highly accurate approximations to A, they suffer from two draw-
backs: (i) they are costly, i.e., O(mn?), and (ii) methods for their
computation are challenging to parallelize and hence they cannot ex-
ploit modern computational platforms [14, 15].

Recently developed algorithms for low-rank approximations
based on randomization [14-17,24] have attracted significant atten-
tion. The randomized algorithms project a large input matrix onto
a lower dimensional space using a random matrix, and apply deter-
ministic methods on the smaller matrix to give an approximation of
the matrix. Hence (i) they are computationally efficient, and (ii) lend
themselves to parallel implementation. Halko et al. [14] proposed
randomized SVD (R-SVD) in which a smaller matrix is formed by
linear combinations of columns of the given matrix. The low-rank
approximation is then given through the SVD of a reduced-size
matrix. Gu [15] applied a slightly modified version of the R-SVD
algorithm to improve subspace iteration methods, and presents a
new error analysis. Another algorithm proposed in [14, Section 5.5],
which we call two-sided randomized SVD (TSR-SVD), is a single-
pass method, i.e., it required only one pass through data. It captures
most attributes of the data by means of forming the smaller matrix
through linear combinations of both rows and columns of the given
matrix, and then applies the SVD for further computations. The
work in [25] proposed a randomized algorithm termed subspace-
orbit randomized SVD (SOR-SVD). SOR-SVD alternately projects
the matrix onto its column and row space. The matrix is then trans-
formed into a lower dimensional space, and a truncated SVD follows
in order to construct an approximation.

TSR-SVD gives poor approximation compared to the optimal
SVD due to the single-pass strategy. SOR-SVD has shown better
performance than TSR-SVD, however both methods apply the SVD
on the reduced-size matrix. This computation may be burdensome
in terms of communication cost [18] for large matrices. In this work,
we develop a randomized algorithm for low-rank approximation that
with comparable flops (i) outperforms the TSR-SVD in terms of ac-
curacy, and (ii) can utilize advanced computer architectures better
than TSR-SVD as well as SOR-SVD.
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3. COMPRESSED RANDOMIZED UTV
DECOMPOSITIONS

In this section, we present a randomized rank-revealing decompo-
sition algorithm termed compressed randomized UTV (CoR-UTV)
decomposition, which computes a low-rank approximation of a
given matrix. We focus on the matrix A with m > n, where CoR-
UTY, in the form of (1), produces an upper triangular middle matrix
T. The modifications required for a CoR-UTV for the case m < n
that produces a lower triangular middle matrix T is straightforward.

3.1. Proposed CoR-UTV Decompositions

Given the matrix A and an integer £ < ¢ < min{m,n}, the ba-
sic version of CoR-UTYV is computed as follows: using a random
number generator, we form a matrix ¥ € R™** with entries drawn
independent, identically distributed (i.i.d.) from the standard Gaus-
sian distribution. We then compute the matrix product:

C; =AY, @

where C; € R™** is, in fact, a projection onto the subspace
spanned by columns of A. Having C;, we form Cy € R™**:

C.=ATCq, 5)

where Cs, is, in fact, a projection onto the subspace spanned by rows

of A. Using a QR decomposition, we factor C; and C> such that:
Cl = (;211:{17 and Cz = (;221:{27 (6)

where Q; and Q2 are approximate bases for R(A) and R(AT),

respectively. We now compress A by left and right multiplications
by the orthonormal bases obtained, forming the matrix D € R**¢:

D = Q{ AQq2, ©)
We then compute a QRCP of D:
D = QRP". ®)
The CoR-UTV-based low-rank approximation of A is given by
Acr =UTV, ©)

where U = Q1Q € R™‘ and V = QP € R™  construct
approximations to the ¢ leading left and right singular vectors of A,
respectively, and T = R € R s upper triangular with diagonals
approximating the first ¢ singular values of A.

CoR-UTYV requires three passes through data, for a matrix stored
externally, but it can be altered to revisit the data only once. To this
end, the compressed matrix D (7) can be approximated as follows:
both sides of the currently unknown D = Q7 AQ are postmulti-
plied by Q% ¥. Having defined A ~ AQ2QZ and C; = AP,
then Dapprox = Q1 C1(Q2 ®)".

CoR-UTYV is accurate for matrices whose singular values dis-
play some decay, however in applications where the data matrix has
a slowly decaying singular spectrum, it may produce a poor approx-
imation compared to the SVD. Thus, we incorporate g steps of a
power iteration [14, 17] to improve the accuracy of the algorithm in
these circumstances. Given the matrix A, and integers k < £ < n
and g, the resulting algorithm is described in Alg. 1.



Algorithm 1 CoR-UTV with Power Method

Matrix A € R™*", integers k, £ and q.
A rank-/ approximation.

Input:

Output:

1: Draw a standard Gaussian matrix Co € R™*¥;

2: fori=1:q+ 1do

3 Compute C; = ACy;

4 Compute Co = ATCq;

5: end for

6: Compute QR decompositions C; = Q1R1, C2 = Q2Ro;

7: Compute D = QT AQ: or Dypprox = QY C1(QE' C2)1;

8: Compute a QRCP D = Qf{f)T or Dypprox = Qf{f)T;

9: Form the CoR-UTV-based low-rank approximation of A:
Ack =UTVT; U=Q:Q, T=R,V = Q.P”.

3.2. Computational Complexity

The cost of an algorithm involves both arithmetic, i.e., the number
of flops, and communication, i.e., data movement either between dif-
ferent levels of a memory hierarchy or between processors [18]. On
multicore and accelerator-based computers, for a data matrix stored
externally, the communication cost becomes substantially more ex-
pensive compared to the arithmetic [18, 26]. The randomized al-
gorithms operate on a compressed version of the data matrix rather
than a matrix itself and therefore can be organized to exploit modern
computational environments better than their classical counterparts.
To decompose A, the simple version of CoR-UTV incurs the
following costs: Step 1 costs n¢, Step 2 costs 2mn¥, Step 3 costs
2mnd, Step 4 costs 2ml% +2nl?, Step 5 costs ml? 4+ 2mnd (if D is
approximated by Dypprox, this step costs 2me? + 2nf? + 3¢%), Step
6 costs 8/3¢3, Step 7 costs 2m¢2 + 2nl. The dominant cost of Steps
1-7 occurs when multiplying A and AT with the corresponding ma-

trices. Thus
CCoR-UTV = O(mn() (10)

The sample size parameter ¢ is typically close to the minimal
rank k. The simple form of CoR-UTYV requires either three or two
passes (when D is approximated by Dgpprox) through data to factor
A. When the power method is incorporated, CoR-UTV requires
either (2¢ + 3) or (2¢ + 2) passes (when D is approximated by
D.pprox) Over the data with arithmetic costs of (2¢ + 3)Ccor-utv Or
(2¢ + 2)Ccor-utv, respectively.

In addition to matrix-matrix multiplications and QR decomposi-
tions, CoR-UTYV performs one QRCP on an ¢ x ¢ matrix, however
TSR-SVD and SOR-SVD perform an SVD on the £ x ¢ matrix. The
SVD is more expensive than QRCP and, furthermore, recently de-
veloped QRCP algorithms based on randomization can perform the
factorization with minimum communication costs [19,20,27], while
standard techniques to compute an SVD are challenging for paral-
lelization [14, 15]. Hence for large matrices to be factored on high
performance computing architectures, where the compressed ¢ x ¢
matrix does not fit into fast memory, the execution time to com-
pute CoR-UTV can be substantially less than those of TSR-SVD
and SOR-SVD. This is an advantage of CoR-UTV over TSR-SVD
and SOR-SVD.

4. ROBUST PCA WITH COR-UTV

This section describes how to solve the robust PCA problem using
the proposed CoR-UTV method. Robust PCA [21, 22] represents
an input low-rank matrix Ml € R™*™ whose fraction of entries be-
ing corrupted, as a linear superposition of a low-rank matrix L and

a sparse matrix of outliers S such as M = L + S, by solving the
following convex program:

minimize (s, s) L] + AlIS|:

. ey
subjectto M =L + S,

where ||B|l. £ >, 0i(B) is the nuclear norm of any matrix B,
A

[Bll. = >, [Bi;| is the £1-norm of B, and A > 0 is a tuning
parameter. One efficient method to solve (11) is the method of aug-
mented Lagrange multipliers (ALM) [28]. The ALM method yields
the optimal solution, however its bottleneck is computing the costly
SVD at each iteration to approximate the low-rank component L of
M [22,29]. To address this issue and to speed up the convergence
of the ALM method, the work in [29] proposes a few techniques
including predicting the principal singular space dimension, a con-
tinuation technique [30], and a truncated SVD by using PROPACK
package [31]. The modified algorithm [29] substantially improves
the convergence speed, however the truncated SVD [31] employed
uses the Lanczos algorithm that (i) is unstable, and (ii) due to the
limited data reuse in its operations, has very poor performance on
modern architectures [10, 14, 15, 23].

To address this issue, by considering the original objective func-
tion proposed in [21,22,29], we apply CoR-UTV as a surrogate to
the truncated SVD to solve the robust PCA problem. We adopt the
continuation technique [29, 30], which increases p in each iteration.
The proposed ALM-CoRUTV method is given in Alg. 2.

Algorithm 2 Robust PCA solved by ALM-CoRUTV

Input: Matrix M, A\, 4, Yo =S =0,5 =0.
Output: Low-rank plus sparse matrix.

1: while the algorithm does not converge do

2:  ComputeLj11 =C —1(M—S; + u;le);

(M — Ljs1 + 45 'Y);

—1
Kj

Compute S; 11 = S)\uj—l

3
4: Compute Y11 =Y, + p;(M = Ljp1 — Sj41);
5. Update p1j+1 = max(pp;, fi);
6: end while
7: return L* and S*.

In Alg. 2, for any matrix B with a CoR-UTV decomposition
described in Section 3, Cs(B) refers to a CoR-UTV thresholding
operator defined as:

Cs(B) =U(,1:7)T(1:7,:)V", (12)

where r is the number of diagonals of T greater than ¢, Ds(B)
refers to a singular value thresholding operator defined as D5 (B) =
UpSs(3p) VL, where Ss(z) = sgn(z)max(|z| — §,0) is a shrink-
age operator [32], A, po, i, p, Yo, and Sp are initial values. The
main operation of ALM-CoRUTYV is computing CoR-UTV in each
iteration, which is efficient in terms of flops, O(mnk), and can be
computed with minimum communication costs.

5. NUMERICAL EXPERIMENTS

In this section, we present simulations that evaluate the performance
of CoR-UTV for approximating a low-rank input matrix. We show
that CoR-UTV provides highly accurate singular values and low-
rank approximations, and compare CoR-UTYV against competing al-
gorithms from the literature. We also employ CoR-UTYV for solving
the robust PCA problem.
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Fig. 1: Comparison of singular values. ¢ = 0 (left), and ¢ = 2 (right).

5.1. Rank-Revealing Property & Singular Values Estimation

We first show that CoR-UTV (i) is rank revealer, i.e., the gap in the
singular value spectrum of the matrix is revealed, and (ii) provides
highly accurate singular values. For the randomized algorithms con-
sidered, namely CoR-UTYV, TSR-SVD, and SOR-SVD, the results
presented are averaged over 20 trials. Each trial was run with the
same input matrix with an independent draw of the test matrix. Due
to space constraints, we only consider one class of low-rank matri-
ces, and for simplicity we focus on a square matrix.

We construct a noisy rank-k matrix A of order 10 generated as
A =UXVT 1 0.10+E, where U and V are random orthonormal
matrices, 3 is diagonal containing the singular values o;s that de-
crease linearly from 1t0 107%, o411 = ... = 0103 = 0,and Eis a
normalized Gaussian matrix. We set k = 20.

‘We compare the singular values of the matrix computed by CoR-
UTV against those of competing methods such as the SVD [10],
QRCP[11], UTV [33] and TSR-SVD [14]. For CoR-UTV and TSR-
SVD, we arbitrarily set the sample size parameter to { = 2k. Both
algorithms require the same number of passes over A, either two or
2q + 2 when the power method is used, to perform a factorization.

The results are shown in Fig. 1. It is observed that (i) CoR-
UTYV strongly reveals the numerical rank k, (ii) with no power it-
erations (¢ = 0), CoR-UTV provides very good approximations to
singular values and outperforms TSR-SVD in approximating both
leading and trailing singular values, (iii) with ¢ = 2, CoR-UTV de-
livers singular values as accurate as the optimal SVD, (iv) QRCP
only suggests the gap in the singular spectrum, and gives a fuzzy
approximation to singular values of the matrix.

5.2. Low-Rank Approximation

We now compare the low-rank approximation constructed by our
method against those of the SVD, QRCP, TSR-SVD, and SOR-SVD
[25]. We construct a rank-k approximation A0 A by varying the
sample size parameter £ with the rank fixed, and calculate the error:

er = [|A — Agullr. 13)

The results are shown in Fig. 2. It is observed that (i) when
q = 0, CoR-UTV and SOR-SVD show similar performances, while
TSR-SVD shows the worst performance, (ii) when ¢ = 2, the errors
resulting from CoR-UTV show no loss of accuracy compared to the
optimal SVD. In this case, QRCP has the poorest performance.

5.3. Robust Principal Component Analysis

Here, we examine the efficiency and efficacy of ALM-CoRUTV in
Alg. 2 for recovering the low-rank and sparse components of data.

2.2 T T
9 3 2
= 4 SVD
=]
. 2.5 * QRCP
<|t 1.8 A TSR-SVD
- SOR-SVD
i 2 161 v CoR-UTV
L5 | \
22 22 30 40 50
1 l
Fig. 2: Comparison of low-rank approximation errors. ¢ = 0 (left), and

q = 2 (right).

We compare the results obtained with those of the efficient inexact
ALM method by [29], called InexactALM hereafter.

We form a rank-£ matrix Ml = L+ S as a linear combination of
a low-rank matrix L € R™*™ and a sparse error matrix S € R™*"™.
The matrix L is generated as L = UVT, where U, V € R"** have
standard Gaussian distributed entries. The error matrix S has s non-
zero entries independently drawn from the set {-80, 80}. We apply
the ALM-CoRUTV and InexactALM algorithms to M to recover
L and S. The numerical results are summarized in Table 1, where
the rank of L (L) = 0.05 x n and s = ||S]jo = 0.05 x n?.

In our experiments, we adopt the initial values suggested in [29].
The algorithms are terminated when |M — L°** —S°%||p <
107°||M||F is satisfied, where (L°“* S°“!) is the pair of out-
put of either algorithm. In the Table, Time(s) refers to the
runtime in seconds, Iter. refers to the number of iterations, and
¢ = |IM — L% — 8°“!||p /|| M]|| r refers to the relative error.

Table 1: Numerical results for synthetic matrix recovery.

n  r(L) ||S|lo Methods r(L*)||S*||o Time(s) Iter. ¢

InexactALM 50 5e4 4.1 12 2.1e-6
1000 50" Se4 ALM-CoRUTV 50 5e4 0.6 12 9.6e-6
InexactALM 100 2e5 274 12 2.7e-6
2000100 25 | o corUTV 100 265 37 12 8.3e-6
InexactALM 150 45e4 75.6 12 3.1e-6

3000 150 45e4 ALM-CORUTV

CoR-UTYV requires a prespecified rank ¢ to perform the factor-
ization. Thus, we set £ = 2k, as a random start, and ¢ = 1. The
results in Table 1 show that ALM-CoRUTV detects the exact rank k
of the input matrix, provides the exact optimal solution, and outper-
forms InexactALM in terms of runtime.

6. CONCLUSIONS

In this paper, we have presented CoR-UTV for computing low-rank
approximations of an input matrix. Simulations show that CoR-
UTYV reveals the numerical rank more sharply than QRCP, and pro-
vides results as good as those of the optimal SVD. CoR-UTV is
more efficient than SVD, QRCP, UTV, TSR-SVD and SOR-SVD
in terms of cost. CoR-UTV can better exploit advanced computa-
tional platforms by leveraging higher levels of parallelism than all
compared algorithms. We have also applied CoR-UTV to solve the
robust PCA problem via the ALM method. Simulations show that
ALM-CoRUTYV outperforms efficiently implemented InexactALM.
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