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ABSTRACT

In this work we present novel provably accelerated gossip
algorithms for solving the average consensus problem. The
proposed protocols are inspired from the recently developed
accelerated variants of the randomized Kaczmarz method - a
popular method for solving linear systems. In each gossip it-
eration all nodes of the network update their values but only
a pair of them exchange their private information. Numerical
experiments on popular wireless sensor networks showing the
benefits of our protocols are also presented.

Index Terms— Average Consensus, Gossip Protocols,
Kaczmarz Methods, Acceleration, Linear Systems

1. INTRODUCTION

Distributed averaging is a fundamental problem in the area of
distributed computing and multi-agent systems [1, 2]. Ran-
domized gossip algorithms are one of the most popular class
of methods for solving it. The seminal 2006 paper of Boyd
et al. [3] on randomized gossip algorithms motivated a flurry
of subsequent research, and now gossip algorithms appear in
many applications, including distributed data fusion in sen-
sor networks [4], load balancing [5] and clock synchroniza-
tion [6]. The development and design of efficient gossip algo-
rithms was studied extensively in the last decade. For a survey
of selected relevant work prior to 2010, we refer the reader to
the survey [7]. For more recent results on randomized gossip
algorithms we suggest [8–13]. See also [14–17].

In the literature of gossip algorithms, an important task
is the design of fast and efficient algorithms. Surprisingly,
to the best of our knowledge, there are no variants of gossip
algorithms that converge to consensus with an accelerated lin-
ear rate. In this work, our focus is precisely this. We design
two provably accelerated randomized gossip protocols which
converge to consensus fast.

The average consensus problem. In the average consensus
(AC) problem we are given an undirected connected network
G = (V, E) with node set V = {1, 2, . . . , n} and edges E .
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Each node i ∈ V holds a local value ci ∈ R. The goal of
AC is for every node to compute the average of these private
values, c̄ := 1

n

∑
i ci, in a distributed fashion. That is, the

exchange of information can only occur between connected
nodes (neighbors).

Main contributions. In this work, building upon a recent
framework for the design and analysis of randomized gossip
algorithms [11, 18], we present two novel and provably ac-
celerated randomized gossip protocols where in each step all
nodes of the network update their values using their own in-
formation but only a pair of them exchange messages. The
accelerated convergence rates of the proposed protocols are
obtained by establishing a connection with the area of accel-
erated randomized Kaczmarz methods for solving consistent
linear systems.

To the best of our knowledge, our protocols are the first
randomized gossip algorithms that converge to consensus
with an accelerated linear rate. The theoretical results are val-
idated via computational testing on typical network topolo-
gies.

Structure of the paper. Section 2 introduces important tech-
nical preliminaries and the necessary background for under-
standing of our methods. Two accelerated variants of the
randomized Kaczmarz (RK) method for solving linear sys-
tems and their theoretical convergence results are described.
In Section 3 we present the two provably accelerated gossip
protocols, along with some remarks on their implementation.
Numerical evaluation of the new gossip protocols is presented
in Section 4. Finally, concluding remarks are given in Sec-
tion 5.

Notation. The following notational conventions are used in
this paper. We write [n] := {1, 2, . . . , n}. Boldface upper-
case letters denote matrices; I is the identity matrix. By L we
denote the solution set of the linear system Ax = b, where
A ∈ Rm×n and b ∈ Rm. By Ai: and A:j we indicate the ith
row and the jth column of matrix A, respectively. Through-
out the paper, x∗ is the projection of x0 onto L (that is, x∗ is
the solution of the best approximation problem; see equation
(2)). With λ+min(·) we indicate the smallest nonzero eigen-
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value of matrix (·). ‖ · ‖ and ‖ · ‖F are used to denote the Eu-
clidean norm and the Frobenius norm, respectively. Finally,
xk = (xk1 , . . . , x

k
n) ∈ Rn represents the vector with the local

values of the n nodes of the network at the kth iteration. Here,
xki denotes the value of node i ∈ [n] at the kth iteration.

2. TECHNICAL PRELIMINARIES

In this section we present the connections between the ran-
domized Kaczmarz methods for solving linear systems and
the gossip algorithms for solving the AC problem, as dis-
cussed in more details in [11, 18]. In particular, we focus
on the presentation of the two recently proposed accelerated
variants of Kaczmarz methods and on their theoretical con-
vergence analysis.

2.1. Kaczmarz-type methods and gossip algorithms

Kaczmarz-type methods are popular algorithms for solving
linear systems Ax = b with many equations. The random-
ized Kaczmarz method (RK) for solving consistent linear sys-
tems was first proposed and proved to converge with linear
rate in [19]. This work triggered much research into develop-
ing and analyzing randomized linear solvers and several im-
proved variants of RK have been proposed [20–28].

In particular, in its simplest version, RK works as follows;
In each step, one row Ai: of matrix A is sampled with prob-
ability pi > 0 and then is used to obtain the next iterate by
following the update rule:

xk+1 = xk − Ai:x
k−bi

‖Ai:‖22
A>i: . (1)

For the case of consistent linear systems, it was shown that
RK and its variants solves the following problem (known as
best approximation problem) [29–31] :

min
x=(x1,...,xn)∈Rn

1
2‖x− x

0‖2 subject to Ax = b. (2)

where x0 is the initial vector of the method.
In [11] it was shown how RK works as a gossip algorithm

when applied to a special linear system encoding the underly-
ing network. The following definition is used to describe the
class of linear systems considered here.

Definition 2.1 ( [11]) A linear system Ax = b is called an
“average consensus (AC) system” when all solutions x satisfy
that xi = xj for all (i, j) ∈ E .

Many linear systems satisfy the above definition. In this work
we focus on the case where b = 0 and A ∈ R|E|×n is the
incidence matrix of G (or its normalized form where ‖Ai:‖ =
1). In this case, the row of the system corresponding to edge
(i, j) directly encodes the constraint xi = xj .

Since the right hand side of the above system is b = 0,
the update rule of equation (1) simplifies to: xk+1 = xk −

Ai:x
k

‖Ai:‖22
A>i: =

[
I− A>

i:Ai:

‖Ai:‖22

]
xk. In the case that the starting

point is x0 = c it can be shown that RK solves the average
consensus probem and that the above udpate rule is equiv-
alent with the pairwise randomized gossip algorithm of [3]
(see [11] for more details). The convergence performance of
RK for solving the best approximation problem (and as a re-
sult the average consensus problem) is described by the fol-
lowing theorem.

Theorem 2.2 ( [29, 30]) Let {xk} be the iterates produced by
(1). Then E[‖xk − x∗‖2] ≤ ρk‖x0 − x∗‖2, where ρ := 1 −
λ+min( A>A

‖A‖2F
) ∈ [0, 1].

2.2. Accelerated Kaczmarz methods

There are two different but very similar ways to accelerate
the randomized Kaczmarz method. The first paper that proves
asymptotic convergence with an accelerated linear rate is [27].
The proof technique is similar to the framework developed
by Nesterov in [32] for the acceleration of coordinate descent
methods. In [33,34] a modified version for the selection of the
parameters was proposed and a non-asymptotic accelerated
linear rate was established. In Algorithm 1, pseudocode of the
Accelerated Kaczmarz method (AccRK) is presented where
both variants can be cast as special cases, by choosing the
parameters with the correct way. There are two options for

Algorithm 1 Accelerated Randomized Kaczmarz Method
(AccRK)

1: Data: Matrix A ∈ Rm×n; vector b ∈ Rm
2: Choose x0 ∈ Rn and set v0 = x0

3: Parameters: Evaluate the sequences of the scalars
αk, βk, γk following one of two possible options.

4: for k = 0, 1, 2, . . . ,K do
5: yk = αkv

k + (1− αk)xk

6: Draw a fresh sample ik ∈ [m] with equal probability

7: xk+1 = yk − Aik:y
k−bik

‖Aik:‖22
A>ik:

8: vk+1 = βkv
k + (1− βk)yk − γk

Aik:y
k−bik

‖Aik:‖22
A>ik:

9: end for

selecting the parameters, which we describe next.

1. From [27]: Choose λ ∈ [0, λ+min(A>A)] and set
γ−1 = 0. Generate the sequence {γk : k = 0, 1, . . . ,K+
1} by choosing γk to be the largest root of

γ2k −
γk
m

= (1− γk
λ
m)γ2k−1

and generate the sequences {αk : k = 0, 1, . . . ,K+1}
and {βk : k = 0, 1, . . . ,K + 1} by setting

αk =
m− γkλ
γk(m2 − λ)

, βk = 1− γkλ

m
.
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2. From [34]: Let

ν = max
u∈Range(A>)

u>
[∑m

i=1 A
>
i:Ai:(A

>A)†A>i:Ai:

]
u

u>A>A
m u

.

(3)
Choose the three sequences to be fixed constants as

follows: βk = β = 1 −
√

λ+
min(W)

ν , γk = γ =√
1

λ+
min(W)ν

, αk = α = 1
1+γν ∈ (0, 1) where W =

A>A
m .

2.3. Theoretical guarantees of AccRK

The two variants (Option 1 and Option 2) of AccRK are
closely related, however their convergence analyses are dif-
ferent. Below we present the theoretical guarantees of the
two options as presented in [27] and [34].

Theorem 2.3 ( [27]) Let {xk}∞k=0 be the sequence of random
iterates produced by Algorithm 1 with the Option 1 for the
parameters. Let λ ∈ [0, λ+min(A>A)] and define σ1 = 1+

√
λ

2m

and σ2 = 1−
√
λ

2m . Then for any k ≥ 0 we have that:

E[‖xk+1 − x∗‖2] ≤ 4λ

(σk+1
1 − σk+1

2 )2
‖x0 − x∗‖2(A>A)+ .

Corollary 1 ( [27]) Note that as k →∞, we have that σk2 →
0. This means that the decrease of the right hand side is gov-
erned mainly by the behavior of the term σ1 in the denomina-
tor and as a result the method converge asymptotically with a
decrease factor per iteration: σ−21 = (1 +

√
λ

2m )−2 ≈ 1−
√
λ
m .

Thus, by choosing λ = λ+min and for the case that λ+min is
small, Algorithm 1 will have significantly faster convergence
rate than RK. Note that the above convergence results hold
for normalized matrices A ∈ Rm×n, that is matrices that
have ‖Ai:‖ = 1 for any i ∈ m.

Theorem 2.4 ( [34]) Let W = A>A
m and assume that

Null(W) = Null(A). Let {xk, yk, vk} be the iterates of
Algorithm 1 with the Option 2 for the parameters. Then

Ψk ≤
(

1−
√
λ+min(W)/ν

)k
Ψ0

where Ψk = E
[
‖vk − x∗‖2W† + 1

µ‖x
k − x∗‖2

]
The above result implies that Algorithm 1 converges linearly

with rate 1 −
√
λ+min(W)/ν, which translates to a total of

O

(√
ν/λ+min(W) log(1/ε)

)
iterations to bring the quantity

Ψk below ε > 0. It can be shown that 1 ≤ ν ≤ 1/λ+min(W),
(Lemma 2 in [34]) where ν is as defined in (3). Thus,√

1
λ+
min(W)

≤
√

ν
λ+
min(W)

≤ 1
λ+
min(W)

which means that the

rate of AccRK (Option 2) is always better than that of the RK
which (see Theorem 2.2) is equal toO(1/λ+min(W) log(1/ε))
for normalized matrices (‖A‖2F = m).

3. ACCELERATED RANDOMIZED GOSSIP
ALGORITHMS

In the previous section we presented the complexity analysis
guarantees of AccRK for solving consistent linear systems
with normalized matrices. Now, let us explain how the two
options of AccRK behave as gossip algorithms when they are
used to solve the linear system Ax = 0 where A ∈ R|E|×n
is the normalized incidence matrix of the network. That is,
each row e = (i, j) of A can be represented as (Ae:)

> =
1√
2
(ei − ej) where ei (resp.ej) is the ith (resp. jth) unit co-

ordinate vector inRn.
By using this particular linear system, the expression

Ai:y
k−bi

‖Ai:‖22
A>i: that appears in steps 8 and 9 of AccRK takes

the following form when the row e = (i, j) ∈ E is sampled:
Ae:y

k−bi
‖Ae:‖22

A>e:
b=0
= Ae:y

k

‖Ae:‖22
A>e:

form of A
=

yki −y
k
j

2 (ei − ej).
Let L be the Laplacian matrix of the network. For solv-

ing the above AC system (see Definition 2.1), the simple
RK requires O

(
( 2m
λ+
min(L)

) log(1/ε)
)

iterations to achieve
expected accuracy ε > 0. To understand the acceleration
in the gossip framework this should be compared to the

O(m
√

2/λ+min(L) log(1/ε)) of AccRK (Option 1) and the

O(
√

2mν/λ+min(L) log(1/ε)) of AccRK (Option 2).
Algorithm 2 describes in a single framework how the two

variants of AccRK of Section 2.2 behave as gossip algorithms
when are used to solve the above linear system. Note that each
node ` ∈ V of the network have two local registers to save the
quantities vk` and xk` . In each step using these two values
every node ` ∈ V of the network (activated or not) computes
the quantity yk` = αkv

k
`+(1−αk)xk` . Then in the kth iteration

the activated nodes i and j of the randomly selected edge e =
(i, j) exchange their values yki and ykj and update the values
of xki , xkj and vki , vkj as shown in Algorithm 2. The rest of the
nodes use only their own yk` to update the values of vki and xki
without communicate with any other node.

The parameter λ+min(L) can be estimated by all nodes in a
decentralized manner using the method described in [35]. In
order to implement this algorithm, we assume that all nodes
have synchronized clocks and that they know the rate at which
gossip updates are performed, so that inactive nodes also up-
date their local values. This may not be feasible in all applica-
tions, but when it is possible (e.g., if nodes are equipped with
inexpensive GPS receivers, or have reliable clocks) then they
can benefit from the significant speedup achieved.
Related work on accelerated gossip algorithms: The idea
of having gossip updates in a network with two registers in
each node is not new. It was first proposed in [36] and its anal-
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Algorithm 2 Accelerated Randomized Gossip Algorithm
(AccGossip)

1: Data: Matrix A ∈ Rm×n be the normalized incidence
matrix; vector b = 0 ∈ Rm

2: Choose x0 ∈ Rn and set v0 = x0
3: Parameters: Evaluate the sequences of the scalars
αk, βk, γk following one of two possible options.

4: for k = 0, 1, 2, . . . ,K do
5: Each node ` ∈ V evaluate yk` = αkv

k
` + (1− αk)xk` .

6: Pick an edge e = (i, j) uniformly at random.
7: Then the nodes update their values as follows:

• The selected node i and node j:

xk+1
i = xk+1

j = (yki + ykj )/2

vk+1
i = βkv

k
i + (1− βk)yki − γk(yki − ykj )/2

vk+1
j = βkv

k
j + (1− βk)ykj − γk(ykj − yki )/2

• Any other node ` ∈ V:

xk+1
` = yk` , vk+1

` = βkv
k
` + (1− βk)yk`

8: end for

ysis under strong conditions was presented in [9]. There local
memory is exploited by installing shift registers at each agent
where the first register stores the agent’s current value and the
second the agent’s value before the latest update. In [18],
the Stochastic Heavy Ball (SHB) method is used for solv-
ing the AC problem and an accelerated method is proposed
which was shown to be in practice faster than the algorithm
of [9,36]. [18] is the first paper that presents gossip algorithms
where in each step all nodes of the network update their val-
ues but only a subset of them exchange their private values.

4. NUMERICAL EVALUATION

We devote this section to numerically evaluate the perfor-
mance of the proposed accelerated gossip protocols. In all
of our experiments we compare the simple RK (equivalent to
pairwise gossip algorithm of [3]) the Stochastic Heavy Ball
method (SHB) proposed in [18] and the AccRK (Algorithm 2)
with the two options for the selection of the parameters pre-
sented in Section 2.2. In comparing the methods we use the
relative error measure ‖xk − x∗‖2/‖x0 − x∗‖2 where the
starting vector of values x0 = c is taken to be always Gaus-
sian vector. For all of our experiments the horizontal axis
represents the number of iterations. The networks used in
the experiments are the cycle (ring graph), the 2-dimension
grid and the randomized geometric graph (RGG) with radius
r =

√
log(n)/n. Code was written in Julia 0.6.3.

For the implementation of SHB we use the same parame-
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Fig. 1: Performance of AccGossip in a 2-dimension grid, random geomet-
ric graph (RGG) and a cycle graph. The Baseline method corresponds to the
randomized pairwise gossip algorithm proposed in [3] and the SHB to the fast
gossip algorithm proposed in [18] ; The n in the title of each plot indicates
the number of nodes of the network. For the grid graph this is n× n.

ters with the ones used in [18]. For the AccRK (Option 1) we
use λ = λ+min(A>A). Note that for all networks under study
the two proposed protocols are faster than both the pairwise
gossip algorithm of [3] and the SHB of [18].

5. CONCLUSION AND FUTURE RESEARCH

We proposed novel provably accelerated randomized gossip
algorithms for solving the AC problem. Our approach is
based on connections established between the gossip algo-
rithms and the Kaczmarz methods for solving linear systems.
We believe that many novel and efficient gossip protocols can
be discovered using results from the literature of Kaczmarz
methods either by using different AC linear systems or us-
ing other Kaczmarz-type algorithms than the one presented
in this manuscript. We speculate that the gossip algorithms
presented in this work can be extended to the more gen-
eral setting of minimizing the average of convex functions
(1/n)

∑n
i=1 fi(x) in a decentralized way [12]. While prepar-

ing this work we become aware of [37] where an accelerated
gossip algorithm is developed for solving the dual of the best
approximation problem (2) using the accelerated coordinate
descent method of [38]. A comparison of our protocols and
the algorithm of [37] is an ongoing research work.
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