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ABSTRACT

In previous work, we proposed a scalable multi-party verification
scheme for expensive iterative computations on a Blockchain sub-
strate by appropriate storage and endorsement of frames of iterates.
In this work, we extend the framework to verify sets of complete
computations with different unordered hyperparameters and develop
frame ordering and compression algorithms to enable scalability in
the system. We illustrate the efficacy of the proposed approach by
verifying the OpenMalaria epidemiological simulation.

Index Terms— distributed trust, compression, endorsement

1. INTRODUCTION

Blockchain technologies, although initially developed in the context
of cryptocurrencies such as Bitcoin, are now being used in many dif-
ferent contexts including data processing [1] and trusted and secure
data sharing in healthcare and genomics [2, 3]. An underappreciated
limiting factor to using Blockchain in data-intensive applications is
scalability [4]. Whereas “2017 was the year of Blockchain hype,”
“2018 is the year of Blockchain scaling” [5, 6, 7].

Machine learning and computational simulation in low-resource
environments are emerging applications of Blockchain in which
scalability is a very important concern [8]. In our previous work
[9], we developed an approach for verifying long-running iterative
computations such as training deep neural networks and running
epidemiological simulations. The data that must be stored on a
Blockchain amounts to iterates of the state of the computation, neu-
ral network weights for example. Because of the relative smoothness
and eventual convergence of such computations, we can efficiently
compress a sequence (or frame) of iterates in the order they are
generated and handle many of the scalability issues in that way.

However, a single run of a training job or simulation is not the
only computation that must be verified. In this paper, we consider the
verification of computations involving multiple runs in applications
such as hyperparameter tuning of neural networks and doing ‘what-
if analyses’ with various choices of interventions that affect disease
spread. In this paper, we propose a system for trusted multi-party
collaboration through the sharing of verified models in the case of
several complete runs with special attention given to ordering and
composing frames to be as efficient as possible in compression (a
problem we did not encounter in [9]). We evaluate the system on the
Openmalaria framework for evaluating efficacy of malaria control
and intervention policies as an example, even though the mechanism
can be easily extended to other distributed computational platforms
directly as well.

2. SIMULATION AND TRUST MODEL

Consider an enumerative computational experiment, where we eval-
uate outputs of a black-box function f : Rdi×Rd

′
→ Rdo over a set

of inputs
{
Xi ∈ Rdi : i ∈ [n]

}
. Let Yi = f(Xi, θi), for i ∈ [n],

where Yi ∈ Rdo is the output, and θi ∈ Rd
′

is an external source
of randomness (noise) used in the computation. We adopt a function
model similar to [9], and assume f(·) is L-Lipschitz continuous in
the input, for all θ ∈ Rd

′
i.e.,

‖f(X1, θ)− f(X2, θ)‖ ≤ L ‖X1 −X2‖ . (1)

The input-output pairs, (Xi, Yi), are referred to as states. We aim to
ensure the computational validity of the outputs.

Consider a distributed network of agents, where one, referred to
as the client, computes the outputs for the set of inputs. All agents,
called peers, have access to f(·) and are informed of the evaluations
of the client. Non-overlapping subsets of peers, called endorsers,
validate individual client computations by (approximate) recompu-
tation. Assume the client reports a state (X̃i, Ỹi) and let the output
recomputed by an endorser j be Ŷ (j)

i = f(X̃i, θj). The reported
state is valid if and only if∥∥∥Ỹi − 1

|Ei|
∑
j∈Ei Ŷ

(j)
i

∥∥∥ ≤ ∆val, (2)

where Ei is the set of endorsers validating state i, and ∆val is the
validation tolerance. Here, we consider Euclidean distance for devi-
ations although this can easily be generalized.

Verification of the experiment concerns ensuring computational
integrity through recorded audits of validated states. If the audits
record the states {Z̃i : i ∈ [n]}, then verifying state i, is to guarantee

P
[∥∥∥Ỹi − E

[
f(X̃i, θ)

]∥∥∥ ≥ ∆ver

]
≤ ρ, (3)

for some desired ρ > 0, without explicit recomputation. Similar to
[9], this is done by recording validated states on a Blockchain and
verifying by checking for consistency of the hash chain of the ledger.

3. MULTI-AGENT BLOCKCHAIN FRAMEWORK

We now extend the multi-agent Blockchain framework of [9] and
consider a similar functional categorization of agents. Clients run
the computations, multiple independent frames of states are vali-
dated in parallel by non-overlapping subsets of endorsers, orderers
check for consistency in endorsements and append valid frames to
the Blockchain ledger as shown in Fig. 1. Note that validation can
be massively parallelized over large networks, reducing overheads.
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Fig. 1. Block diagram of computational trust policy.

3.1. Compression and Validation Schema

The multi-agent Blockchain framework (MBF) [9] constructs frames
of states, compresses them using delta encoding and successive re-
finement lattice vector quantization, reducing the communication
and storage overheads and making the system scalable. For iterative
computations, the closeness in the Euclidean space of successive it-
erates can be exploited in easily constructing frames of successive
iterates that can be compressed using delta encoding [10] and suc-
cessive refinement lattice vector quantization [11, 12, 13]. However,
in the enumerative computational experiment, such spatial relation-
ships are not available a priori and so the construction of frames and
their compression is not outrightly evident.

We now formulate a frame construction algorithm that sequen-
tially organizes the states into frames that can be compressed effi-
ciently. From the Lipschitz continuity of f(·), we know that any
two inputs X1, X2 that are close result in spatially close outputs,
Y1, Y2. This property is leveraged to construct frames of spatially
close states, that can be compressed efficiently using a similar lattice-
based compression of state differences.

Each frame comprises an ordering of different states and a com-
pressed representation of the differences according to this order.
Consider a set of states {Z1, . . . , Zn} and let the distance func-
tion be d(·, ·). The algorithm for frame construction is described
in Alg. 1. The pairwise distances between the states are used to
construct a forest of trees with the minimum cumulative weight
(distances). Here the coding parameter ∆q represents the maximum
magnitude of the state difference incurred in the delta encoding
phase, which controls the number of bits allocated per state by the
compression scheme. The algorithm uses a modified version of
Prim’s algorithm for minimum spanning tree construction.

Lemma 1 The frame construction algorithm Φ minimizes the cu-
mulative weight of the spanning forest for a given ∆q .

The result follows directly from the matroidal structure of trees. This
also naturally implies the following result.

Corollary 1 For a given set of states {Z1, . . . , Zn}, minimizes the
number of frames, subject to the distance constraint imposed by ∆q .

The compression, with approximation error ε, is then performed
according to Alg. 2. Each tree is compressed into a frame by first

Algorithm 1 Frame construction, T = Φ ({Z1, . . . , Zn} ,∆q)

Wi,j ← d(Zi, Zj), for i 6= j ∈ [n]
Construct weighted complete graph G = ([n],W )
Choose v1 ∈ [n]; T1 ← ({v1} , ∅) , T ← {T1}, V ← {v1}
for r = 2 to n do
dmin ← min {Wj,k : j ∈ V, k ∈ [n]\V}
(ũ, ṽ, T̃ )← arg min {Wj,k : j ∈ V ∩ Ti, k ∈ [n]\V}
if dmin ≤ ∆q then

Add vertex ṽ and edge (ũ, ṽ) to tree T̃ ; V ← V ∪ {ṽ}
else

Construct tree T|T |+1 = ({ṽ} , ∅); T ← T ∪ {T|T |+1}
end if

end for
return T

choosing a root as checkpoint at random, compressing the check-
point using the lossy Lempel-Ziv compressor of [9], ENCLZ(·). The
algorithm then scans edges of the tree using depth first search, delta
encodes the states along the edges, and compresses the differences
using a successive refinement lattice vector quantizer, according to
the lattice L, ENCL(·). The compressed frames are then composed
of the tree structure and the set of compressed differences.

In Alg. 2, the lattice for the quantization is chosen according to
the dimension of the states. Further information on the input sam-
pling distribution or the joint distribution of the states, if available,
can be used to choose optimal lattices. Also, encoding and decoding
according to a lattice requires a search for the closest vector on the
lattice, which may be implemented using efficient heuristics. We
omit the details of the lattice vector coding owing to space con-
straints and refer the reader to prior work in the area [14, 15].

A direct extension of [9, Thm. 1] indicates that the optimal
choice of approximation error for deterministic, L-Lipschitz contin-
uous computations is ε ≤ ∆val

L+1
. The representation of inter state

dependency as trees is optimal as it minimizes the number of bits
required to communicate the relationship.

Lemma 2 If the difference vectors are uniform in B(∆q) =
{x : ‖x‖ ≤ ∆q}, then the maximum expected cost of represent-
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Algorithm 2 Compressor, F = ENC ({Z1, . . . , Zn} , T , ε)
for all i ∈ |T | do

Choose a root r ∈ Ti, ∆̃
(i)
r = ENCLZ(Zr, ε)

while Depth First Scan(Ti) do
Let scanned edge be (u, v) where u is the parent node
Delta encode along edge, ∆Zv ← Zv − Zu
Lattice code difference ∆̃

(i)
v = ENCL(∆Zv, ε)

end while
Compressed frame, Fi ←

{
Ti,
{

∆̃
(i)
v : v ∈ Ti

}}
end for
return F ← {Fi : i ∈ [|T |]}

ing a single frame of size M is

Ccomm = O

(
d log

B

ε
+ (M − 1)d log

∆q

ε
+ (M − 1) logM

)
,

(4)
where d = di + do and for any state Z, ‖Z‖ ≤ B.

The result follows analogous to that of [9]. We note that representa-
tion the cost of frames as trees incurs a cost of (M−1) logM bits as
the number of rooted trees onM nodes is given by Cayley’s formula
as MM−1 [16]. This, along with Lem. 1 and Cor. 1 highlights the
efficiency, need, and choice of the frame construction algorithm.

3.2. Endorser and Orderer Operations

We now briefly highlight the role of the endorser and orderer. As
depicted in Fig. 1, the endorsers receive compressed frames from the
computing client, decode the state vectors by parsing the frame using
depth first search, and using the lattice vector decoding to recover
the states from the compressed differences vectors. The endorsers
then recompute the output for the approximate input and compare
the reported output with the recomputed average. If the deviation is
within the accepted validation tolerance, then the state is validated
and dispatched to the orderer to be added to the Blockchain. If a
state is invalidated, the endorsers report to the client.

Clients attempt to validate invalidated states by successively re-
fining the reported estimates using the lattice vector quantizer and re-
send the updates to the endorser for validation. When sufficiently re-
fined versions of the state are invalidated by the endorsers, the client
recomputes the output from scratch.

Upon receiving the endorsements for frames, the orderer checks
for consistency of the endorsements, broadcasts validated frames and
appends it to the Blockchain ledger, as depicted in Fig. 1. Since val-
idated states are stored as a hash chain, any alteration of the stored
audits results in an inconsistency in the hash chain with high prob-
ability. It is also computationally infeasible to compute alterations
to the audits that preserve hash consistency owing to the collision
resistance of hash functions. Thus even if some adversaries in the
network collude to corrupt stored audits, it is reflected as an incon-
sistency, both across peers, and in the hash chain.

When sufficiently large number of endorsers are chosen to
validate each state, as described in [9], this allows for a simple
verification mechanism in which the peer only needs to check for
hash consistency across a sampled subset of peers to guarantee (3).
Since the states have already been validated according to a tolerance
of ∆val, it might suffice in certain applications to only store a further
compressed approximate of some states. That is, depending on the
importance of the computation to the overall experiment, input-
output pairs with lesser significance can be compressed further,

using a coarser compressor to reduce the their storage cost on the
blockchain. This however is both application and context-specific.

4. EXPERIMENTAL RESULTS

We study the computational trust system through the example of
the OpenMalaria simulation framework [17, 18], which is an open
source simulation environment used to study malaria epidemiology
and efficacy of control mechanisms. In particular, we consider the
experiment of identifying the optimal disease intervention policy in
terms of the proportion of insecticide treated nets distributed and the
fraction of geographical area covered by indoor residual spraying.
For various candidate policies, the client evaluates the efficiency of
the policy in terms of cost-normalized disability adjusted life years.
Let us refer to the output as the reward corresponding to the policy.
We evaluate the costs involved with different endorsement set sizes
and the resulting improvements in computational accuracy.

Consider a set of policies {X1, . . . , Xn} sampled i.i.d. uni-
formly at random from [0, 1]2 and let the corresponding mean
rewards be {Ȳ1, . . . , Ȳn}. The compressed frames are validated,
according to (2), by subsets of m endorsers operating in parallel.
For these experiments we adopt an approximation error of 30% of
the maximum deviation, and a maximum frame size of 100.

To understand the importance of frame construction toward effi-
cient compression, we consider the communication and compression
costs for varying validation tolerance and compression accuracy in
Fig. 2. For the analysis of costs of trust, we consider validations
across m = 10 endorsers for each state. First, we note that the
baseline is set by the uncompressed communication that incurs sig-
nificant number bits that effectively amount to communicating an
unsigned float per dimension.

We also consider fine and coarse compression as determined
by the approximation error using the MST-based frame construc-
tion and just sequential framing of states. We observe that for fine
compression, the frame construction algorithm significantly reduces
the the cost of compression as the sequential framing results in more
checkpoints and smaller frames. Since the approximation error is
low, the average number of bits per state, per dimension, per in-
stance of communication also increases substantially with each new
checkpoint being stored as is. On the other hand, the frame construc-
tion algorithm groups states more efficiently, and the delta encod-
ing and vector quantization functions more efficiently. This however
is much less pronounced under coarse compression. When the ap-
proximation error is large, the Lempel-Ziv compression [19] for the
checkpoints suffices to represent frames in terms of prior encounters
of sufficiently close states, and so the need for frame construction is
much less pronounced.

The cost of communication is benchmarked against the corre-
sponding cost of computation expressed in terms of the average num-
ber of computations across the client and endorsers for validation of
a state in Fig. 3. The baseline for the computational cost is estab-
lished by the uncompressed communication case, and as observed
in the figure, decreases with increasing validation tolerance magni-
tude. We note that a fine compression, both with and without frame
construction results in comparable computation costs, indicating that
the communication costs can be reduced without an increase in the
number of computations.

On the other hand, in the case of coarse compression, whereas
the communication costs are significantly reduced, the number of
computations per state also increases, especially for smaller vali-
dation tolerance magnitudes. This is understandable as the coarse
compression results in an increased number of invalidations result-
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Fig. 2. Communication costs of framing

Fig. 3. Computation costs with framing

ing from compression error. Naturally, when the validation tolerance
is comparable to the approximation error, the error from the com-
pression is effectively mitigated, resulting in similar computational
cost as that of fine compression. Comparing the compression with
and without frame construction, we note that the computational cost
with the frame construction is larger as the coarse compression error
accounts for coarse errors in the deviations across states, therein im-
plying that the deviation in output is comparatively higher, especially
when the standard deviation across outputs is small.

To study the effect of the validation scheme on computational
accuracy, let us define δ0

i =
∥∥Yi − Ȳi∥∥ and δ1

i =
∥∥∥Ỹi − Ȳi∥∥∥, where

Ȳi is the expected output, Ỹi is the validated output, and Yi is the
output generated by the client prior to validation. Define T0 =
P
[
δ1
i > δ0

i

]
and T1 = P

[
δ1
i < δ0

i

]
, i.e., T0 is the probability that

the validation results in larger deviation from the mean reward, and
T1 is the probability with which this deviation from the mean reward
is reduced.

In Fig. 4 we plot the variation of T0 with T1 for different sizes
of endorser sets and differing validation tolerance. As the tolerance
reduces, the validation mechanism reduces the deviation from the
expectation more often. This is observed in Fig. 4 and we note that
T1 > T0 implies that the validation improves the computation more
often than not. When the tolerance ∆val is large, the number of in-
stances of invalidation is far fewer and so the fraction of computa-
tions that are altered are also much fewer.

As the number of number of endorsers increases, the average of
recomputed outputs is a robust estimator of the mean of the compu-
tation and thus an alignment with these averages for validation also
implies reduced deviation from the mean. Thus T1 � T0 whenm is
large, as seen in Fig. 4, highlighting the returns from the investment

Fig. 4. Type errors by deviation: plot of T0 vs T1

Fig. 5. Validation gains

in more endorsers for validation.
Another metric to study the computational gains from valida-

tion is the probability that the output, as compared against the ex-
pected output would be invalidated, with and without the valida-
tion framework. To this end, let us define ρ0 = P

[
δ0
i > ∆val

]
and ρ1 = P

[
δ1
i > ∆val

]
. Naturally we would like to ensure that

ρ1 < ρ0, and in fact make it as small as possible.
Fig. 5 compares ρ1 with ρ0 as achieved by the system for vari-

ous numbers of endorsers and various tolerance levels. In each case,
the validation mechanism ensures that ρ1 < ρ0. Furthermore, the
gains from the validation are far more pronounced upon the use of
more endorsers. This is again expected as the average of more inde-
pendent endorsers is a more robust estimate of the expected rewards.
The gains in terms of ρ0

ρ1
reduce with increasing tolerance ∆val as

the system is more accommodating to deviations from the mean and
from the endorser averages.

5. CONCLUSION

We have developed a multi-party Blockchain-based framework for
verifying expensive computations, including a novel method for
constructing and ordering frames of outputs that compress well.
Our study is informative in practical system design for trusted
distributed computing as it quantifies the cost-benefit tradeoffs al-
lowing for appropriate system design and parameter selection. The
OpenMalaria experiment conducted herein provides an example of
a computational experiment where the distributed trust mechanism
significantly enhances the computations. The platform can naturally
be adapted to other settings such as hyperparameter tuning in ma-
chine learning that not only allows for better learning mechanisms,
but also provides a pipeline to facilitate scientific reproducibility.
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