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ABSTRACT

The Canonical Polyadic Decomposition (CPD) is one of the
most basic tensor models used in signal processing and ma-
chine learning. Despite its wide applicability, identifiability
conditions and algorithms for CPD in cases where the tensor
is incomplete are lagging behind its practical use. We first
present a tensor-based framework for bilinear factorizations
subject to monomial constraints, called monomial factoriza-
tions. Next, we explain that the CPD of a tensor that has
missing fibers can be interpreted as a monomial factorization
problem. Finally, using the monomial factorization interpre-
tation, we show that CPD recovery conditions can be obtained
that only rely on the observed fibers of the tensor.

Index Terms— Tensor, canonical polyadic decomposi-
tion, monomial, missing data. subsampling.

1. INTRODUCTION

The CPD of a tensor has found many applications in sig-
nal processing and machine learning; see [1] and references
therein. In many applications the tensor is incomplete due to
missing observations, corrupt data or subsampling. It has also
been recognized that incomplete tensors, obtained by ran-
dom sampling, play an important role in the context of large
scale CPD computations [2, 3, 4]. Several optimization-based
methods to compute the CPD of an incomplete tensor have
been proposed (e.g., [5, 6, 2, 7, 1]), but the algebraic founda-
tions are not discussed. As an alternative to random sampling,
we have recently proposed a structured subsampling approach
in which only a subset of the fibers of the tensor are consid-
ered [8]. In particular, we showed that if the fibers in one of
the modes of the tensor are sampled in a structured way, then
CPD recovery can be ensured, despite missing data. We also
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mention that a tensor subsampling method that relies on reg-
ular sampling has been proposed in [9]. In this paper we first
provide in Section 2 a new monomial factorization approach
to bilinear factorizations exhibiting monomial structure in one
mode. Based on this framework, in Section 3 we will extend
the tensor subsampling framework in [8] to cases where fibers
in several modes of the tensor are considered. This result will
explain that by considering fibers in several modes, more re-
laxed CPD recovery conditions can be obtained compared to
results that only consider fibers in a single mode. Before div-
ing into the details, a brief review of CPD is provided next.

1.1. Canonical Polyadic Decomposition (CPD)
Consider the CPD of the tensor X ∈ CI×J×K :

X =

R∑
r=1

ar ◦ br ◦ sr =

R∑
r=1

G(r) ◦ sr, (1)

where R denotes the rank of X , A = [a1, . . . , aR] ∈ CI×R,
B = [b1, . . . ,bR] ∈ CJ×R, S = [s1, . . . , sR] ∈ CK×R are
the CPD factor matrices of X and ’◦’ denotes the outer prod-
uct, e.g., (ar◦br◦sr)ijk = airbjrskr. Note that G(r) = arbT

r

is a rank-1 matrix. This fact will be exploited in Section 3. A
key feature of the CPD that will also be used in Section 3 is
that it is unique under mild conditions, i.e., A, B and S are
unique (up to intrinsic column scaling and permutation am-
biguities); see [1, 10, 11, 12, 13, 14, 15, 16, 17, 18] and ref-
erences therein. In this paper we will consider the following
three matrix representations of (1):

X(1) = (B� S) AT ∈ CJK×I , (2)

X(2) = (A� S) BT ∈ CIK×J , (3)

X(3) = (A� B) ST ∈ CIJ×K , (4)

where ’�’ denotes the Khatri-Rao (columnwise Kronecker)
product and ’(·)T ’ denotes the transpose. The rows of X(1)

correspond to the mode-1 fibers {x• jk} of X , defined as
(x• jk)ijk = xijk. Likewise, X(2) and X(3) are obtained by
stacking the mode-2 fibers {xi • k} and mode-3 fibers {xij •}
of X , defined as (xi • k)ijk = xijk and (xij •)ijk = xijk,
respectively.
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2. MONOMIAL FACTORIZATION

Consider bilinear factorizations of the form

X = AST ∈ CI×K , (5)

in which S ∈ CK×R has full column rank and the columns of
A ∈ CI×R satisfy N monomial relations of the form

ap1,n,r · · · apL,n,r − as1,n,r · · · asL,n,r = 0, (6)

where am,r denotes the mth entry of the rth column of A and
L denotes the degree of the monomials in (6). The subscripts
pl,n and sl,n in (6) will in Sections 2.1 and 2.2 be used in
the derivation of the connections between monomial factor-
izations of the form (5) and tensor decompositions.

2.1. Block term decomposition approach
Define the vectors b(n)

r = [ap1,n,r . . . apL,n,r]T ∈ CL and
c(n)
r = [as1,n,r . . . asL,n,r]T ∈ CL. Then relation (6) can be

related to the matrix AL(b(n)
r , c(n)

r ) ∈ CL×L:

AL(b(n)
r , c(n)

r ) =



b
(n)
1,r 0 · · · 0 (−1)L · c(n)

1,r

c
(n)
2,r b

(n)
2,r

. . . 0

0 c
(n)
3,r

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 c
(n)
L,r b

(n)
L,r


.(7)

It can be verified that if
∏L

l=1 apl,n,r 6= 0 or
∏L

l=1 asl,n,r 6= 0,
then AL(b(n)

r , c(n)
r ) is a rank-(L− 1) matrix when the mono-

mial relation (6) is satisfied. Using the mapping (7) and the
fact that (5) is bilinear, we obtain

Y(n) := [vec(AL(u(n)
1 , v(n)

1 )) . . . vec(AL(u(n)
K , v(n)

K ))]

= M(n)ST ∈ CL2×K , n ∈ {1, . . . , N}, (8)

where vec(·) denotes the column vector obtained by stacking
the columns of its input matrix, u(n)

k = [xp1,n,k . . . xpL,n,k]T ∈
CL, v(n)

k = [xs1,n,k . . . xsL,n,k]T ∈ CL and M(n) =

[vec(AL(b(n)
1 , c(n)

1 )) . . . vec(AL(b(n)
R , c(n)

R ))] ∈ CL2×R. The
key observation is that each equation in (8) corresponds
to a Block Term Decomposition (BTD) [19], in which the
columns of M(n) correspond to vectorized rank-(L − 1) ma-
trices m(n)

r = AL(b(n)
r , c(n)

r ). Overall, the collection of all
N equations in (8) yields a coupled BTD [20, 21]. Con-
sequently, uniqueness conditions and algorithms developed
for coupled BTD can also be used to solve the monomial
factorization problem (5).

2.2. Null space approach
As an alternative to the previously discussed coupled BTD
approach to monomial factorizations, a null space approach
will briefly be discussed. In short, the monomial factoriza-
tion problem (6) can, under certain conditions (not discussed

here), be reduced to a CPD problem that in the exact (noise-
less) case can be solved by means of an eigenvalue decom-
position (EVD). Let e(I)

i ∈ CI denote a unit vector with unit
entry at the ith position and zeros elsewhere. Furthermore,
let W = [w1, . . . ,wR] = S−T . Since b(n)

l,r = e(I)T
pl,n Xwr and

c
(n)
l,r = e(I)T

sl,n Xwr, we conclude from (6) that

ap1,n
· · · apL,n

− as1,n · · · asL,n
=

(e(I)T
p1,n

Xwr) · · · (e(I)T
pL,n

Xwr)− (e(I)T
s1,n Xwr) · · · (e(I)T

sL,n
Xwr) =

p(n)T
L ·

(
wr ⊗ · · · ⊗ wr

)
= 0, r ∈ {1, . . . , R}, (9)

where ’⊗’ denotes the Kronecker product and p(n)
L :=

XT e(I)
p1,n ⊗· · ·⊗XT e(I)

pL,n −XT e(I)
s1,n ⊗· · ·⊗XT e(I)

sL,n ∈ CRL

.
Stacking yields

P(N,L) · (wr ⊗ · · · ⊗ wr) = 0, r ∈ {1, . . . , R}, (10)

where P(N,L) = [p(1)
L , . . . ,p(N)

L ]T ∈ CN×RL

. From (10)
we know that there exist at least R linearly independent vec-
tors {wr ⊗ · · · ⊗ wr}, each with property wr ⊗ · · · ⊗ wr ∈
ker(P(N,L)) ∩ π(L)

S , where π(L)
S denotes the subspace of vec-

torized RL symmetric tensors. Thus, if the dimension of
ker(P(N,L)) ∩ π(L)

S is minimal (i.e., R) and the columns of
R ∈ CN×R form a basis for ker(P(N,L)) ∩ π(L)

S , then there
exists a nonsingular change-of-basis matrix F ∈ CR×R such
that R = (W� · · · �W)FT , (11)

where W appears L times in (11). Clearly, (11) corresponds
to an (L + 1)-th order tensor R =

∑R
r=1 wr ◦ · · ·wr ◦ fr,

whose CPD is unique and can be computed via an EVD [18].

3. CPD OF TENSOR THAT HAS MISSING FIBERS

Consider the incomplete version of the tensor (1):

Y = D ∗ X = D ∗

(
R∑

r=1

ar ◦ br ◦ sr

)
∈ CI×J×K , (12)

where ’∗’ denotes the Hadamard (element-wise) product,
yijk = (D ∗ X )ijk = dijkxijk and entry dijk of D ∈
{0, 1}I×J×K is equal to one if xijk is observed and zero oth-
erwise. In this section we will demonstrate how the monomial
factorization framework can be used to obtain uniqueness
conditions in cases whereD is structured. More precisely, we
consider the case where the tensor X has missing fibers. Let
D(1) ∈ {0, 1}J×K denote the mode-1 fiber observation ma-
trix in which d(1)

jk = 1 if fiber x• jk is observed. Likewise, let
D(2) ∈ {0, 1}I×K and D(3) ∈ {0, 1}I×J denote the mode-2
and mode-3 fiber observation matrices in which d(2)

ik = 1 if
fiber xi • k is observed and d(3)

ij = 1 if fiber xij • is observed.
The missing fiber versions of (2)–(4) are given by

Y(1) = Diag(vec(D(1)T ))X(1) ∈ CJK×I , (13)

Y(2) = Diag(vec(D(2)T ))X(2) ∈ CIK×J , (14)

Y(3) = Diag(vec(D(3)T ))X(3) ∈ CIJ×K , (15)
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where Diag(vec(D(n)T )) denotes a diagonal matrix that holds
the vector vec(D(n)T ) on its diagonal. In [8] we considered
the problem of finding the CPD from a subset of observable
mode-3 fibers in Y(3) as briefly reviewed in Section 3.1. Us-
ing the monomial factorization approach, we will in Section
3.2 explain that joint exploitation of observable fibers in sev-
eral modes can lead to improved uniqueness conditions.

3.1. Exploiting fibers in a single mode

Assume that we observe F3 mode-3 fibers, i.e., Y(3) 6= 0 and
D(3) contains F3 nonzero entries. As in ordinary CPD, we
can exploit the rank-1 property of G(r) in (1). More precisely,
j1-th column of G(r) is proportional to its j2-th column, i.e.,
arbj1,r ∝ arbj2,r. This property can be expressed in terms of
the monomial relation∣∣∣∣∣ g(r)

i1j1
g

(r)
i1j2

g
(r)
i2j1

g
(r)
i2j2

∣∣∣∣∣ = g
(r)
i1j1

g
(r)
i2j2
− g(r)

i2j1
g

(r)
i1j2

= 0, (16)

where ’|·|’ denotes the determinant. We will now make use of
the monomial factorization framework. The combination of
(9) with [ap1,n

, ap2,n
, as1,n , as2,n ] = [g

(r)
i1j1

, g
(r)
i2j2

, g
(r)
i2j1

, g
(r)
i1j2

]
and (16) yields∣∣∣∣∣ (e(I)

i1
⊗ e(J)

j1
)T Y(3)wr (e(I)

i1
⊗ e(J)

j2
)T Y(3)wr

(e(I)
i2
⊗ e(J)

j1
)T Y(3)wr (e(I)

i2
⊗ e(J)

j2
)T Y(3)wr

∣∣∣∣∣
= p(n) (wr ⊗ wr) = 0, (17)

where p(n) = (e(I)
i1
⊗ e(J)

j1
)T Y(3) ⊗ (e(I)

i2
⊗ e(J)

j2
)T Y(3) −

(e(I)
i2
⊗ e(J)

j1
)T Y(3) ⊗ (e(I)

i1
⊗ e(J)

j2
)T Y(3), and the superscript

’n’ in the row-vector p(n) ∈ C1×R2

takes all four subscripts
i1, i2, j1 and j2 into account. Define

ΦΦΦ =
{

(i1, i2, j1, j2)
∣∣ d(3)

i1j1
= d

(3)
i2j1

= d
(3)
i1j2

= d
(3)
i2j2

= 1,

1 ≤ i1 < i2 ≤ I, 1 ≤ j1 < j2 ≤ J
}
. (18)

In words, ΦΦΦ contains all quadruples (i1, i2, j1, j2) from which
a monomial relation of the form (16) can be constructed,
given only Y(3). Stacking yields (cf. Eq. (10)):

P(N3,2) (wr ⊗ wr) = 0, (19)

where P(N3,2) = [p(1)T , . . . ,p(N3)T ]T ∈ CN3×R2

and N3

denotes the number of elements in (18). Hence, if the dimen-
sion of ker(P(N3,2))∩π(2)

S is minimal (i.e.,R), then W = S−T

is unique (up to intrinsic ambiguities). This also means that
S and Z = Y(3)W = Diag(vec(D(3)T ))(A � B) are unique.
The remaining matrices A and B can now be obtained from
Diag(vec(D(3)T ))(A � B) via rank-1 matrix completion. In
more detail, observe that the r-th column of Z can be reshaped
into an incomplete (I × J) rank-1 matrix

Z(r) = D(3) ∗ (arbT
r ), r ∈ {1, . . . , R}. (20)

The incomplete matrix Z(r) can be interpreted as a bipartite
graph, denoted byG(r). The two groups of vertices associated

with G(r) are the row indices 1, . . . , I and the column indices
1, . . . , J . Let E(r) = {(i, j) | z(r)

i,j 6= 0} denote the edge set
associated with the bipartite graph G(r). If G(r) is connected
and has the property{
∀i ∈ {1, . . . , I}, ∃ j′ ∈ {1, . . . , J} : (i, j

′
) ∈ E(r),

∀j ∈ {1, . . . , J}, ∃ i′ ∈ {1, . . . , I} : (i
′
, j) ∈ E(r),

(21)

then the vectors ar and br can be obtained from (20) via a
rank-1 factorization of the incomplete matrix Z(r); see [8] for
further details. To summarize, if

S has full column rank,
ker(P(N3,2)) ∩ π(2)

S is an R-dimensional subspace,
G(r) is connected and with property (21),∀r ∈ {1, . . . , R},

(22)

then the rank of X is R and the CPD of X is unique.
Note that the sufficient CPD uniqueness condition (22) is

far from necessary and it can easily be improved upon by the
use of tensorization methods [18]. In [8] it was explained that
as few as F3 = I + J + R fibers can be sufficient for CPD
uniqueness.

3.2. Exploiting fibers in several modes

Using the monomial factorization framework in Section 2, we
will now demonstrate that by jointly taking the observable
fibers in Y(2) and Y(3) into account, improved uniqueness
conditions can be obtained. Let X (2) =

∑R
r=1 ar ◦ sr ◦ br =∑R

r=1 H(r) ◦ br ∈ CI×K×J denote the tensorized version of
(3), in which H(r) = arsTr ∈ CI×K . Observe that the j-th
column of G(r) in (1) is proportional to the k-th column of
H(r), i.e., arbj,r ∝ arsk,r. This property can be expressed in
terms of the monomial relation:1∣∣∣∣∣ g(r)

i1k
h

(r)
i1j

g
(r)
i2k

h
(r)
i2j

∣∣∣∣∣ = g
(r)
i1k
h

(r)
i2j
− g(r)

i2k
h

(r)
i1j

= 0, (23)

where 1 ≤ i1 < i2 ≤ I , 1 ≤ j ≤ J and 1 ≤ k ≤ K.
Let us assume that the CPD factor matrices B and S have full
column rank (J,K ≥ R). W.l.o.g. we can now assume that
B and S are nonsingular, i.e., J = K = R. (Note that if the
matrices B and S do not have full column rank, then higher-
order minors can be considered [15].) Similar to (9) and (16),
we are now looking for nonsingular matrices W = S−T and
V = B−T so that{

Y(3)wr = Diag(vec(D(3)T ))(ar ⊗ br),

Y(2)vr = Diag(vec(D(2)T ))(ar ⊗ sr).
(24)

1We note in passing that this approach is similar to double coupled CPD
[22]. However, there are also notable differences. First, in the proposed
monomial factorization approach, we can exploit both the rank-1 structures
within Y(n) (e.g. via (16)) and the rank-1 structures between Y(m) and Y(n)

(e.g. via (23)) whereas in double coupled CPD only the latter is exploited.
Second, the monomial factorization formulation is different, e.g., it reduces
the problem to a CPD problem. Third, we also consider the incomplete case
where data is missing.
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The combination of (23) and (24) yields∣∣∣∣∣ (e(I)
i1
⊗ e(J)

j )T Y(3)wr (e(I)
i1
⊗ e(K)

k )T Y(2)vr
(e(I)

i2
⊗ e(J)

j )T Y(3)wr (e(I)
i2
⊗ e(K)

k )T Y(2)vr

∣∣∣∣∣
= q(n) (wr ⊗ vr) = 0, (25)

where q(n) = (e(I)
i1
⊗ e(J)

j )T Y(3) ⊗ (e(I)
i2
⊗ e(K)

k )T Y(2) −
(e(I)

i2
⊗ e(J)

j )T Y(3) ⊗ (e(I)
i1
⊗ e(K)

k )T Y(2), and the superscript
’n’ in the row-vector q(n) ∈ C1×R2

takes all the subscripts
i1, i2, j and k into account. Define

ΞΞΞ
(2,3)
(1) =

{
(i1, i2, j, k)

∣∣ d(2)
i1k

= d
(2)
i2k

= d
(3)
i1j

= d
(3)
i2j

= 1,

1 ≤ i1 < i2 ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ K
}
. (26)

In words, ΞΞΞ
(2,3)
(1) contains all quadruples (i1, i2, j, k) from

which a monomial relation of the form (23) can be con-
structed, given only Y(2) and Y(3). Stacking yields (cf. (10)):

Q(N2,3,2,3) (wr ⊗ vr) = 0, (27)

where Q(N2,3,2,3) = [q(1)T , . . . ,q(Np)T ]T ∈ C(N2,3,2,3)×R2

in which N2,3 denotes the number of elements in (26). Based
on (27) a uniqueness condition2 that takes into account that
fibers in two modes are observed can immediately be derived.
However, a more relaxed uniqueness condition can be ob-
tained by combining (19) and (27). This approach jointly ex-
ploits the rank-1 structure within Y(3) and the rank-1 structure
between Y(2) and Y(3). (The inclusion of the rank-1 structure
within Y(2) can be done in a similar manner.) Observe that{

(IR ⊗ P(N,2))ΠΠΠT (wr ⊗ wr ⊗ vr) = 0,

(IR ⊗Q(N2,3,2,3)) (wr ⊗ wr ⊗ vr) = 0,
(28)

where ΠΠΠ ∈ CR3×R3

is the permutation matrix with property
ΠΠΠ (wr ⊗ vr ⊗ wr) = wr ⊗wr ⊗ vr. From (28) it is clear that
(19) and (27) can be combined as follows

ΓΓΓ (wr ⊗ wr ⊗ vr) = 0, (29)

where ΓΓΓ =
[

(IR⊗P(N3,2))ΠΠΠT

IR⊗Q(N2,3,2,3)

]
∈ C(N3+N2,3)R×R3

. From (29)

it is in turn clear that if the subspace ker (ΓΓΓ)∩π(2)
S ×CR isR-

dimensional (which is minimal since ΓΓΓ (W�W� V) = 0),
then S = W−T and B = V−T can be obtained via a CPD.
More precisely, let the columns of the matrix R ∈ CR3×R

constitute a basis for ker (ΓΓΓ)∩π(2)
S ×CR. Then there exists a

nonsingular change-of-basis matrix F ∈ CR×R such that

R = (W�W� V)FT . (30)

Clearly, (30) corresponds to a (partially symmetric) tensor
R =

∑R
r=1 wr ◦wr ◦vr ◦fr, whose CPD is unique. Finally, A

2If only relation (27) is exploited, then in the subsequent uniqueness con-
dition (32), the assumption that ker(ΓΓΓ) ∩ π(2)

S × CR is R-dimensional has
to be replaced by the more restrictive assumption that ker(Q(N2,3,2,3)) is
R-dimensional.

follows from (12). Briefly, let di ∈ {0, 1}JK with (di)p = 1
if entry (x(1))pi in (2) is observed and zero otherwise. Then
the i-th column y(1)

i of Y(1) admits the factorization
y(1)
i = di ∗ ((B� S) AT e(I)

i ) = Diag(di)(B� S)AT e(I)
i ,
(31)

where Diag(di) denotes the diagonal matrix that holds di

on its diagonal. Hence, if the matrix Diag(di) (B� S)
has full column rank, which is necessary for CPD unique-
ness, then the i-th row of A is unique, i.e., e(I)T

i A =

(Diag(di) (B� S))†y(1)
i , where (·)† denotes the left-inverse.

To summarize, if
B and S have full column rank,
ker (ΓΓΓ) ∩ π(2)

S × CR is an R-dimensional subspace,
Diag(di) (B� S) has full column rank ∀i ∈ {1, . . . I},

(32)

then the rank of X is R and the CPD of X is unique.
Comparing the sufficient CPD uniqueness condition (22)

(and other related conditions that only rely on fibers in a sin-
gle mode) with the sufficient CPD uniqueness condition (32),
it is clear that the connectivity constraint on G(r) in the for-
mer condition has been dropped. In other words, by jointly
considering fibers in at least two modes, the structure of the
fiber observation matrix D(3) in (15) can be relaxed.

Another notable difference between a condition that only
relies on fibers in a single mode and a condition that exploits
fibers in several modes is that the latter can lead to a relaxed
bound on R. As an example, consider the case where I = 4,
J = K = R, F2 = 16 mode-2 fibers {xi • k}i,k∈{1,2,3,4} are
observed and F3 = 16 mode-3 fibers {xij •}i,j∈{1,2,3,4} are
observed. An immediate way to establish CPD uniqueness is
to use a single-mode fiber condition. For example, we know
from [8] that if R ≤ F3 − I − J = 8, then S is expected
to be unique (up to column scaling and permutation ambi-
guities). If G(r) is connected and with property (21) for all
r ∈ {1, . . . , R}, then CPD uniqueness can be ensured from
(20). The very basic two-mode fibers observation condition
(32) relaxes the bound to R ≤ 11.

To summarize, the joint exploitation of fibers in two
modes of a tensor for CPD recovery is a novel and nontrivial
extension of existing results based on fibers in a single mode
(e.g., [8]). The extension to joint exploitation of observable
fibers in all three modes is analogous. However, due to space
considerations, this extension will first be discussed in a full
length journal paper version.

4. CONCLUSION
We first presented a new tensor decomposition approach to
bilinear factorization enjoying monomial constraints. Based
on this approach we developed uniqueness conditions for the
CPD of a tensor in which only a subset of its fibers are ob-
served. In particular, we showed that by jointly exploiting
fibers in several modes, more relaxed conditions on the rank
and the missing data pattern of the tensor compared to [8] can
be obtained without sacrificing the uniqueness of its CPD.

7493



5. REFERENCES

[1] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang,
E. E. Papalexakis, and C. Faloutsos, “Tensor decom-
position for signal processing and machine learning,”
IEEE Trans. Signal Processing, vol. 65, no. 13, pp.
3551–3582, July 2017.

[2] N. Vervliet, O. Debals, L. Sorber, and L. De Lathauwer,
“Breaking the curse of dimensionality using decompo-
sitions of incomplete tensors,” IEEE Signal Process.
Mag., vol. 31, no. 5, pp. 71–79, Jan. 2014.

[3] N. D. Sidiropoulos, E. E. Papalexakis, and C. Falout-
sos, “PArallel RAndomly COMPressed Cubes: A Scal-
able Distributed Architecture for Big Tensor Decompo-
sition,” IEEE Signal Process. Mag., vol. 31, no. 5, pp.
57–70, Sept. 2014.

[4] N. Vervliet and L. De Lathauwer, “A randomized block
sampling approach to canonical polyadic decomposition
of large-scale tensors,” IEEE J. Sel. Topics Signal Pro-
cess., vol. 10, no. 2, pp. 284–295, 2016.

[5] G. Tomasi and R. Bro, “PARAFAC and missing val-
ues,” Chemometr. Intell. Lab., vol. 75, no. 2, pp. 163–
180, 2005.

[6] E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Mørup,
“Scalable tensor factorizations for incomplete data,”
Chemometr. Intell. Lab., vol. 106, no. 1, pp. 41–56,
2011.

[7] T. Maehara, K. Hayashi, and K.-.I Kawarabayash, “Ex-
pected tensor decomposition with stochastic gradient
descent,” in Proc. AAAI’16, Phoenix, AZ, USA, 2016.

[8] M. Sørensen and L. De Lathauwer, “Fiber sam-
pling approach to canonical polyadic decomposition
and tensor completion,” Tech. Rep. 15-151, ESAT-
STADIUS, KU Leuven, Belgium, 2018, Available at
ftp://ftp.esat.kuleuven.be/pub/sista/mbousse/
reports/sorensen2018fibersampling.pdf.

[9] C. I. Kanatsoulis, N. D. Sidiropoulos, M. Akcakaya, and
X. Fu, “Regular sampling of tensor signals: Theory and
application to fMRI,” Submitted to ICASSP 2019.

[10] J. B. Kruskal, “Three-way arrays: Rank and uniqueness
of trilinear decompositions, with applications to arith-
metic complexity and statistics,” Linear Algebra and its
Applications, vol. 18, pp. 95–138, 1977.

[11] T. Jiang and N. D. Sidiropoulos, “Kruskal’s per-
mutation lemma and the identification of CANDE-
COMP/PARAFAC and bilinear model with constant
modulus constraints,” IEEE Trans. Signal Process., vol.
52, no. 9, pp. 2625–2636, Sept. 2004.

[12] Lieven De Lathauwer, “A link between the canonical
decomposition in multilinear algebra and simultaneous
matrix diagonalization,” SIAM J. Matrix Anal. Appl.,
vol. 28, no. 3, pp. 642–666, 2006.

[13] L. Chiantini and G. Ottaviani, “On generic identifiabil-
ity of of 3-tensors of small rank,” SIAM J. Matrix Anal.
Appl., vol. 33, no. 3, pp. 101–8–1037, 2012.

[14] C. Bocci, L. Chiantini, and G. Ottaviani, “Refined meth-
ods for the identifiability of tensors,” Annali de Matem-
atica, vol. 193, no. 6, pp. 1691–1702, Dec. 2014.

[15] I. Domanov and L. De Lathauwer, “On the uniqueness
of the canonical polyadic decomposition of third-order
tensors — Part I: Basic results and uniqueness of one
factor matrix,” SIAM J. Matrix Anal. Appl., vol. 34, no.
3, pp. 855–875, 2013.

[16] I. Domanov and L. De Lathauwer, “On the uniqueness
of the canonical polyadic decomposition of third-order
tensors — Part II: Overall uniqueness,” SIAM J. Matrix
Anal. Appl., vol. 34, no. 3, pp. 876–903, 2013.

[17] I. Domanov and L. De Lathauwer, “Generic unique-
ness conditions for the canonical polyadic decomposi-
tion and INDSCAL,” SIAM J. Matrix Anal. Appl., vol.
36, no. 4, pp. 1567–1589, 2015.

[18] I. Domanov and L. De Lathauwer, “Canonical polyadic
decomposition of third-order tensors: Relaxed unique-
ness conditions and algebraic algorithm,” Linear Alge-
bra Appl., vol. 513, pp. 342–375, Jan. 2017.

[19] L. De Lathauwer, “Decomposition of a higher-order ten-
sor in block terms — Part II: Definitions and unique-
ness,” SIAM J. Matrix Anal. Appl., vol. 30, no. 3, pp.
1033–1066, 2008.

[20] M. Sørensen and L. De Lathauwer, “Coupled canoni-
cal polyadic decompositions and (coupled) decomposi-
tions in multilinear rank-(Lr,n, Lr,n, 1) terms — Part I:
Uniqueness,” SIAM J. Matrix Anal. Appl., vol. 36, no.
2, pp. 496–522, 2015.

[21] M. Sørensen, I. Domanov, and L. De Lathauwer,
“Coupled canonical polyadic decompositions and (cou-
pled) decompositions in multilinear rank-(Lr,n, Lr,n, 1)
terms — Part II: Algorithms,” SIAM J. Matrix Anal.
Appl., vol. 36, no. 3, pp. 1015–1045, 2015.

[22] X.-F. Gong, Q.-H. Lin, F.-Y. Cong, and L. De Lath-
auwer, “Double coupled canonical polyadic decompo-
sition for joint blind source separation,” IEEE Trans.
Signal Processing, vol. 66, pp. 3475–3490, 2018.

7494


		2019-03-18T11:18:59-0500
	Preflight Ticket Signature




