
LOW-RANK MATRIX APPROXIMATION BASED ON INTERMINGLED RANDOMIZED
DECOMPOSITION

Maboud F. Kaloorazi and Jie Chen

Center of Intelligent Acoustics and Immersive Communications (CIAIC)
School of Marine Science and Technology

Northwestern Polytechnical University, China
Emails: kaloorazi@nwpu.edu.cn, dr.jie.chen@ieee.org

ABSTRACT

This work introduces a novel matrix decomposition method termed
Intermingled Randomized Singular Value Decomposition (InR-
SVD), along with an InR-SVD variant powered by the power iter-
ation scheme. InR-SVD computes a low-rank approximation to an
input matrix by means of random sampling techniques. Given a large
and dense m × n matrix, InR-SVD constructs a low-rank approx-
imation with a few passes over the data in O(mnk) floating-point
operations, where k is much smaller than m and n. Furthermore,
InR-SVD can exploit modern computational platforms and thereby
being optimized for maximum efficiency. InR-SVD is applied to
synthetic data as well as real data in image reconstruction and ro-
bust principal component analysis problems. Simulations show that
InR-SVD outperforms existing approaches.

Index Terms— Matrix decomposition, randomized algorithms,
low-rank approximation, image reconstruction, robust PCA.

1. INTRODUCTION

Low-rank approximation is constructing an approximation to an in-
put matrix by one of lower rank. The compact low-rank representa-
tion captures most features of a high-dimensional matrix and thereby
results in significant reduction in memory requirements and, more
importantly, computational costs. Matrices with low-rank structure
appear in many applications such as background subtraction [1–3],
IP network anomaly detection [4, 5], latent variable graphical mod-
eling [6], system identification [7], subspace clustering [8, 9] sensor
and multichannel signal processing [10], subspace estimation over
networks [11], and tensor decompositions [12].

Singular value decomposition (SVD) [13] and the rank-revealing
QR (RRQR) decomposition [14,15] are the most commonly used de-
terministic algorithms for computing a low-rank approximation of a
matrix. The bottlenecks of using these algorithms, however, are that
(i) they are computationally expensive and (ii) standard techniques
for their computation are challenging to parallelize in order to utilize
modern architectures [16, 17]. Recently developed algorithms for
low-rank approximations based on random sampling schemes have
been shown to be remarkably efficient, highly accurate, robust, and
are known to outperform traditional algorithms in many practical
situations [16–19]. The power of randomized algorithms lies in that
(i) they are computationally efficient, and (ii) their main operations
can be optimized for maximum efficiency on modern architectures.

In this paper, we develop a randomized decompositional method
termed intermingled randomized SVD (InR-SVD), which constructs

1This work was supported in part by NSFC grants 61671382 and
61811530283, and 111 project (B18041).

a low-rank approximation to an input matrix. InR-SVD requires a
few passes through data for a large and dense m × n matrix stored
externally, and runs in O(mnk) floating-point operations (flops),
where k � min{m,n}. The main operations of InR-SVD include
matrix-matrix multiplication and the QR factorization. Due to re-
cently developed Communication-Avoiding QR (CAQR) algorithms
[20], which perform the computations with minimum communica-
tion costs, InR-SVD can be optimized for peak machine performance
on advanced architectures. Through numerical examples we illus-
trate that InR-SVD provides highly accurate low-rank approxima-
tion, as accurate as the optimal SVD, to a given matrix. We further
apply InR-SVD to treat an image reconstruction problem, as well as
to solve the robust principal component analysis (robust PCA) prob-
lem, i.e., to decompose a matrix with grossly corrupted entries into
a low-rank matrix plus a sparse matrix of outliers [21, 22].

We structure the rest of this paper as follows. In Section 2, we
discuss the related works and the problem on which this work is
focused. In Section 3, we describe the proposed InR-SVD method
in detail. In Section 4, we develop an algorithm for robust PCA by
using InR-SVD. In Section 5, we present and discuss our numerical
experimental results. Conclusions are given in Section 6.

2. RELATED WORKS AND PROBLEM STATEMENT

Given a matrix A ∈ Rm×n, where m ≥ n, with numerical rank k,
its SVD [13] is defined as:

A =UAΣAVT
A =

[
Uk U0

] [Σk 0
0 Σ0

] [
Vk V0

]T
, (1)

where Uk ∈ Rm×k, U0 ∈ Rm×(n−k), Vk ∈ Rn×k and
V0 ∈ Rn×(n−k) have orthonormal columns, Σk ∈ Rk×k and
Σ0 ∈ R(n−k)×(n−k) are diagonal matrices containing the singular
values, i.e., Σk = diag(σ1, ..., σk) and Σ0 = diag(σk+1, ..., σn).
A can be written as A = Ak + A0, where Ak = UkΣkV

T
k ,

and A0 = U0Σ0V
T
0 . The SVD constructs the optimal rank-k

approximation Ak to A, [13] i.e.,

‖A−Ak‖2 = σk+1,

‖A−Ak‖F =
√
σ2
k+1 + ...+ σ2

n,
(2)

where ‖·‖2 and ‖·‖F indicate the spectral norm and the Frobenius
norm of a matrix, respectively. In this paper we focus on the ma-
trix A defined. The SVD is highly accurate and provides detailed
information on singular subspaces and singular values of a matrix.
However, its computation is costly, e.g., O(mn2) for A. Moreover,

7475978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

standard techniques for its computation are challenging for paral-
lelization on advanced computational envirenments [16, 17]. Par-
tial SVD based on Krylov subspace methods, such as the Lanczos
and Arnoldi algorithms, is an economic version of the SVD. Partial
SVD, for instance, for A costs O(mnk). However, it suffers from
two drawbacks: (i) it is numerically unstable [13,23], and (ii) it does
not lend itself to parallel implementations [16, 17]. The latter makes
partial SVD unsuitable on modern computational devices. Another
widely used algorithm for low-rank approximation is the RRQR de-
composition [14]. RRQR for A takes the following form:

AΠ = QR = Q

[
R11 R12

0 R22

]
, (3)

where Π is a permutation matrix, Q ∈ Rm×n has orthonormal
columns, R ∈ Rn×n is upper triangular where R11 ∈ Rk×k is well-
conditioned with σmin(R11) = O(σk), and the `2-norm of R22 ∈
R(n−k)×(n−k) is sufficiently small. RRQR gives a rank-k approxi-
mation in O(mnk), however due to its pivoted strategy [13] is un-
suitable to apply on modern computational platforms [16, 17, 20].

Recently, low-rank approximation algorithms based on random-
ized sampling techniques [16–19,24–26] have attracted considerable
attention. These algorithms project a large data matrix onto a lower
dimensional subspace by means of a random matrix, and apply de-
terministic methods on the smaller matrix to give an approximation
of the matrix. Thus (i) they are computationally efficient, and (ii)
they readily lend themselves to parallel implementation. Halko et
al. [16] proposed randomized SVD (R-SVD) in which a smaller ma-
trix is first formed by linear combinations of columns of the given
matrix through randomization. The low-rank approximation is then
given through the SVD of a reduced-size matrix. Another algorithm
proposed in [16, Section 5.5], which we call two-sided randomized
SVD (TSR-SVD), is a single-pass method, i.e., it needs only one
pass through data. TSR-SVD captures most actions of an input ma-
trix by forming a smaller matrix via linear combinations of both rows
and columns of the matrix, and then applies the SVD for further
computations. The TSR-SVD algorithm is given in Alg. 1.

Algorithm 1 Two-Sided Randomized SVD (TSR-SVD)

Input: Matrix A ∈ Rm×n, integers k and `.
Output: A rank-` approximation.

1: Draw random matrices Ω1 ∈ Rn×` and Ω2 ∈ Rm×`;
2: Compute Y1 = AΩ1 and Y2 = ATΩ2 in a single pass

through A;
3: Compute QR decompositions Y1 = Q1R1, Y2 = Q2R2;
4: Compute Bapprox = QT

1 Y1(QT
2 Ω1)†;

5: Compute an SVD Bapprox = UΣV ∈ R`×`;
6: A ≈ (Q1U)Σ(Q2V)T .

In Alg. 1, the dagger † denotes the Moore-Penrose pseudo-
inverse. The work in [27] proposed an algorithm termed subspace-
orbit randomized SVD (SOR-SVD). SOR-SVD alternately projects
the matrix onto its column and row space via a random Gaussian ma-
trix. The matrix is then transformed into a lower dimensional sub-
space, and a truncated SVD follows to construct an approximation.

TSR-SVD gives poor approximation compared to the SVD due
to the single-pass strategy. SOR-SVD has shown better performance
than TSR-SVD. In this work, we develop a randomized algorithm
for low-rank approximation that with comparable flops (i) outper-
forms TSR-SVD in terms of accuracy, and (ii) can utilize advanced
computer architectures better than both TSR-SVD and SOR-SVD.

3. INTERMINGLED RANDOMIZED SINGULAR VALUE
DECOMPOSITION

In this section, we present intermingled randomized SVD (InR-
SVD). We also present a variant of InR-SVD with power iteration
which improves the performance of the algorithm at an extra cost.

The idea behind InR-SVD is first to reduce the dimension of a
high-dimensional input matrix through intermingling randomization
and orthogonalization, and next to employ the deterministic SVD
on the reduced-size data. Finally, the low-rank approximation is
constructed by projecting the small data back to the original space.
Given the matrix A and an integer k ≤ ` < n, the basic form of
InR-SVD is computed as follows:

1. Generate a standard Gaussian matrix Φ ∈ Rn×`.
2. Compute the matrix product:

B1 = AΦ. (4)

The matrix B1 ∈ Rm×` is formed through linear combina-
tions of columns of A by Φ.

3. Compute a QR decomposition of B1:

B1 = Q1R1. (5)

The matrix Q1 is an approximate basis for the range of A.

4. Compute the matrix product:

B2 = ATQ1. (6)

The matrix B2 ∈ Rn×` is constructed by linear combinations
of rows of A by means of orthonormal Q1.

5. Compute a QR decomposition of B2:

B2 = Q2R2. (7)

The matrix Q2 is an approximate basis for the range of AT .

6. Compute the matrix product:

H = QT
1 AQ2. (8)

The matrix H ∈ R`×` is formed by compression of A via
left and right multiplications by the orthonormal bases.

7. Compute an SVD of H:

H = UΣVT . (9)

8. Form InR-SVD-based low-rank approximation of A:

ÂInR = (Q1U)Σ(Q2V)T , (10)

where Q1U ∈ Rm×` and Q2V ∈ Rn×` are approximations
to the ` leading left and right singular vectors of A, respec-
tively, and Σ contains the corresponding singular values.

Step 6 of the InR-SVD procedure requires 2mn` + 2m`2 flops
and one pass through A. However, computation of this step can be
totally eliminated as follows:

HT = QT
2 ATQ1︸ ︷︷ ︸

B2

= QT
2 B2 = R2. (11)

Thus H = RT
2 (Note that QT

2 Q2 = I since Q2 is orthonormal).
The key differences between InR-SVD and competing TSR-

SVD and SOR-SVD are that (i) InR-SVD uses an orthonormal basis

7476

to project the input matrix onto its row space, while TSR-SVD uses
a random matrix and SOR-SVD employs a compressed version of
the matrix, (ii) both TSR-SVD and SOR-SVD approximate the com-
pressed matrix of equation (8), even though it is obtained through
different strategies, while InR-SVD obviates this step. Discard-
ing the computation of step 6, as explained later, can substantially
reduce the cost of InR-SVD compared to TSR-SVD and SOR-SVD.

InR-SVD provides fairly accurate approximations for matrices
with decaying singular values. However in applications where the
data matrix has a slowly decaying singular spectrum, it may pro-
duce poor approximations compared with the SVD. Therefore, we
incorporate q steps of the power method [16,19] to improve the per-
formance of the algorithm in these situations. Given A and integers
k ≤ ` < n and q, the resulting algorithm is presented in Alg. 2.

Algorithm 2 InR-SVD with Power Method

Input: Matrix A ∈ Rm×n, integers k, ` and q.
Output: A rank-` approximation.

1: Generate a standard Gaussian matrix Φ ∈ Rn×`;
2: Compute B1 = (AAT)qAΦ;
3: Compute QR decomposition B1 = Q1R1,
4: Compute B2 = ATQ1;
5: Compute QR decomposition B2 = Q2R2;
6: Compute an SVD RT

2 = UΣVT ; % See equation (11);
7: Form the low-rank approximation: ÂInR = (Q1U)Σ(Q2V)T .

3.1. Computational Complexity

To factor A, the simple form of InR-SVD incurs the following costs
(we only consider high-order terms): Step 1 costs n`, Step 2 costs
2mn`, Step 3 costs 2m`2, Step 4 costs 2mn`, Step 5 costs 2n`2,
Step 6 is averted, Step 7 costs 2`3, and Step 8 costs 2m`2 + 2n`2.
The dominant cost of Steps 1-8 occurs when A and AT are multi-
plied by corresponding matrices. Thus

CInR-SVD = O(mn`). (12)

The sample size parameter `, in general, is close to the minimal
rank k. The simple version of InR-SVD needs two passes over A
to give an approximation. While, InR-SVD of Alg. 2 needs 2q + 2
passes over the data with arithmetic cost of (2q + 2)CInR-SVD.

The cost of an algorithm is determined by both arithmetic, i.e.,
flop counts, and communication, i.e., transfering data between dif-
ferent levels of the memory hierarchy or between processors [20].
On high performance computing devices, for an input matrix stored
externally, the cost of moving data becomes considerably more ex-
pensive than the arithmetic [20, 28]. InR-SVD carries out several
matrix-matrix multiplications, however (unlike TSR-SVD and SOR-
SVD) it does not compute the compressed matrix H in (8). Although
matrix-matrix multiplication is readily parallelizable, computing this
matrix may still impose a considerable cost on the algorithm when
implemented on advanced computational environments. This is an
advantage of InR-SVD over TSR-SVD and SOR-SVD. InR-SVD
also performs two QR decompositions on m × ` and n × ` ma-
trices. Demmel et al. [20] developed communication-avoiding QR
methods that perform the computations with optimal communica-
tion costs. Thus, QR algorithms of InR-SVD can be implemented
efficiently (this is also the case for TSR-SVD and SOR-SVD). InR-
SVD further performs one SVD on a (structured) upper triangular
`×`matrix R2 (7). The decomposition of this matrix can be done in
a more efficient way compared to those of TSR-SVD and SOR-SVD
(the corresponding matrices for latter methods, which are obtained
differently from InR-SVD, do not have a special structure). This is
another advantage of InR-SVD over TSR-SVD and SOR-SVD.

4. ROBUST PCA WITH INR-SVD

This section presents a new method to solve the robust PCA problem
by employing InR-SVD. Robust PCA [21, 22] represents a grossly
perturbed low-rank matrix D ∈ Rm×n as a linear superposition of
a clean low-rank matrix L and a sparse matrix of outliers S such as
D = L + S by solving the following convex program:

minimize(L,S) ‖L‖∗ + λ‖S‖1
subject to D = L + S,

(13)

where ‖N‖∗ ,
∑
i σi(N) refers to the nuclear norm of a matrix

N, ‖N‖1 ,
∑
ij |Nij | refers to the `1-norm of N, and λ > 0 is a

tuning parameter. One efficient method to solve (13) is the method
of augmented Lagrange multipliers (ALM) [29]. The ALM method
yields the optimal solution, however its serious bottleneck is com-
puting the costly SVD at each iteration to approximate the low-rank
component L of D [22, 30]. To address this issue and to speed up
the convergence of the ALM method, the work in [30] proposed a
few techniques such as predicting the principal singular space di-
mension, a continuation scheme [31], and a truncated SVD by using
PROPACK package [32]. The modified algorithm [30] considerably
improved the convergence speed, however the truncated SVD [32]
applied uses the Lanczos algorithm that (i) is unstable, and (ii) has
poor performance on modern architectures, due to the limited data
reuse in its operations [13,16,17,23]. To address this issue, by retain-
ing the original objective function [21,22,30], we apply InR-SVD as
a surrogate to the truncated SVD to solve the robust PCA problem.
We adopt the continuation technique [30,31] that increases µ in each
iteration. The proposed ALM-InRSVD method is given in Alg. 3.

Algorithm 3 Robust PCA solved by ALM-InRSVD

Input: Matrix D, λ, µ,Y0 = S0 = 0, j = 0.
Output: Low-rank plus sparse matrix.

1: while the algorithm does not converge do
2: Compute Lj+1 = J

µ−1
j

(D− Sj + µ−1
j Yj);

3: Compute Sj+1 = S
λµ−1

j
(D− Lj+1 + µ−1

j Y);

4: Compute Yj+1 = Yj + µj(D− Lj+1 − Sj+1);
5: Update µj+1 = max(ρµj , µ̄);
6: end while
7: return L∗ and S∗.

In Alg. 3, for any matrix N with an InR-SVD such as N =
UInRΣInRVT

InR, Jδ(N) = UInRSδ(ΣInR)VT
InR refers to an InR-SVD

thresholding operator, where Sδ(x) = sgn(x)max(|x| − δ, 0) is a
shrinkage operator [33], λ, µ0, µ̄, ρ, Y0, and S0 are initial val-
ues. The main operation of ALM-InRSVD is computing InR-SVD
in each iteration, which is efficient in terms of flops, O(mnk), and
can be computed with minimum communication cost.

5. NUMERICAL EXPERIMENTS

In this section, we present simulations that evaluate the performance
of InR-SVD for approximating an input matrix. We illustrate that
InR-SVD furnishes highly accurate low-rank approximations, and
compare InR-SVD against competing algorithms from the literature.
We further employ InR-SVD for solving the robust PCA problem.
The simulations were conducted in MATLAB.

5.1. Low-Rank Approximation

We compare the low-rank approximation constructed by our method
against those of the SVD [13], RRQR [14], TSR-SVD [16], and

7477

32 40 50 60

3

4

Sampling parameter `

‖A
−

Â
ou

t‖
F

32 40 50 60

2.5

3

Sampling parameter `

SVD

RRQR

TSR-SVD

SOR-SVD

InR-SVD

Fig. 1: Comparison of approximation errors. q = 0 (left), and q = 1 (right).

SOR-SVD [27]. For the randomized algorithms considered, namely
InR-SVD, TSR-SVD, and SOR-SVD, the results presented are aver-
aged over 10 trials. Due to space constraints, we consider one type
of low-rank matrices, and for simplicity we focus on a square matrix.

We construct a noisy rank-k matrix A of order 2000 generated
as A = UΣVT + 0.1σkE, where U and V are random orthonor-
mal matrices, Σ is diagonal consisting of singular values σis that de-
crease linearly from 1 to 10−12, σk+1 = ... = σ2000 = 0, and E is
a normalized Gaussian matrix. We set k = 30. We construct a rank-
k approximation Âout to A by varying the sample size parameter `
with the rank being fixed, and calculate the error E = ‖A− Âout‖F .
The results are shown in Fig. 1. It is observed that (i) when q = 0,
InR-SVD and SOR-SVD show similar performances, while TSR-
SVD shows the worst performance, (ii) when q = 1, the result by
InR-SVD shows no loss of accuracy compared to the optimal SVD.
In this case, RRQR has the poorest performance.

5.2. Image Reconstruction

We assess the quality of low-rank approximation constructed by InR-
SVD through reconstructing a gray-scale image of a differential gear
of size 1280 × 804, taken from [34]. We compare our results with
those of widely used truncated RRQR and the truncated SVD of
PROPACK package [32]. Fig. 2 shows the reconstructed images
with rank = 70, and Fig. 3 displays the runtime and the approxi-
mation error defined as Eapprox = ‖A−Âapprox‖F , where Âapprox is
the approximation by each algorithm. It is observed that with q = 1
or q = 2, the reconstructions (and also errors incurred) by InR-SVD
match those of the optimal truncated SVD.

Fig. 2: low-rank image reconstruction with rank = 70.

30 60 90 120

101.5

102

Approximation rank

‖A
−

Â
ap

pr
ox
‖ F

Trun. SVD

Trun. RRQR

InR-SVD q=0

InR-SVD q=1

InR-SVD q=2

30 60 90 120

1

2

Approximation rank

Ti
m

e
(s

ec
on

ds
)

Fig. 3: Comparison of reconstruction errors and runtime.

5.3. Robust PCA

We examine the effectiveness of ALM-InRSVD of Alg. 3 in recover-
ing low-rank and sparse components of synthetic data. We compare
our results with those of the efficient inexact ALM method by [30],
called InexactALM hereafter. We generate a matrix D = L+S as
a linear combination of a rank-kmatrix L ∈ Rn×n and a sparse error
matrix S ∈ Rn×n. The matrix L is generated as L = UVT , where
U, V ∈ Rn×k are standard Gaussian matrices. The error matrix
S has s non-zero entries independently drawn from the set {-100,
100}. We apply ALM-InRSVD and InexactALM to D to recover
L and S. The numerical results are summarized in Table 1, where
the rank of L is set to k = 0.05× n and s = ‖S‖0 = 0.05× n2.

In our simulation, we adopt the initial values suggested in
[30]. The algorithms are stopped when ‖D− Lout − Sout‖F <
10−4‖D‖F is met, where (Lout,Sout) is the pair of output of either
algorithm. In the Table, T ime refers to the runtime in seconds, Iter.
refers to the number of iterations, and ζ = ‖D− Lout − Sout‖F /‖D‖F
is defined as the relative error.

Table 1: Numerical results for synthetic data recovery.

n k ‖S‖0 Methods k̂ ‖Ŝ‖0 Time Iter. ζ

1000 50 5e4 InexactALM 50 5e4 7.8 9 3.1e-5
ALM-InRSVD 50 5e4 3.0 9 4.1e-5

2000 100 2e5 InexactALM 100 2e5 40.7 9 4.1e-5
ALM-InRSVD 100 2e5 17.7 9 4.7e-5

3000 150 45e4 InexactALM 150 45e4 120.9 9 5.1e-5
ALM-InRSVD 150 45e4 57.9 9 5.4e-5

InR-SVD requires a prespecified rank ` to perform the factoriza-
tion. We thus set ` = 2k as a random start. We also set q = 1. The
results in Table 1 show that ALM-InRSVD successfully detects the
exact rank k of the input matrices, and provides the exact optimal
solution over 2 times faster than InexactALM.

6. CONCLUSION

In this paper, we presented InR-SVD for computing a low-rank ap-
proximation of an input matrix. Simulations show that InR-SVD
provides approximations as accurate as those of the optimal SVD.
InR-SVD is computationally more efficient than SVD, RRQR, and
outperforms TSR-SVD in accuracy. InR-SVD can better exploit ad-
vanced architectures by leveraging higher levels of parallelism than
SVD, RRQR, TSR-SVD and SOR-SVD. We further applied InR-
SVD to reconstruct a low-rank image, as well as to solve the robust
PCA problem via the ALM method. Simulations show that proposed
ALM-InRSVD outperforms efficiently implemented InexactALM.

7478

7. REFERENCES

[1] T. Bouwmans, S. Javed, H. Zhang, H. Lin, and R. Otazo, “On
the Applications of Robust PCA in Image and Video Process-
ing,” Proceedings of the IEEE, vol. 106, no. 8, pp. 1427–1457,
Aug 2018.

[2] M. F. Kaloorazi and R. C. de Lamare, “Low-Rank and Sparse
Matrix Recovery Based on a Randomized Rank-revealing De-
composition,” in 22nd Intl Conf. on DSP 2017, UK, Aug 2017.

[3] ——, “Compressed Randomized UTV Decompositions for
Low-Rank Matrix Approximations,” IEEE Journal of Selected
Topics in Signal Process., vol. 12, no. 6, pp. 1–15, Dec 2018.

[4] ——, “Anomaly Detection in IP Networks Based on Ran-
domized Subspace Methods,” in ICASSP, USA, Mar 2017, pp.
4222–4226.

[5] A. M. J. Niyaz Hussain and M. Priscilla, “A Survey on Various
Kinds of Anomalies Detection Techniques in the Mobile Ad-
hoc Network Environment,” Int. J. S. Res. CSE & IT., vol. 3,
no. 3, pp. 1538–1541, 2018.

[6] V. Chandrasekaran, P. Parrilo, and A. Willsky, “Latent Vari-
able Graphical Model Selection via Convex Optimization,” The
Ann. of Stat., vol. 40, no. 4, p. 1935–1967, 2012.

[7] M. Fazel, T. K. Pong, D. Sun, and P. Tseng, “Hankel Matrix
Rank Minimization with Applications to System Identification
and Realization,” SIAM. J. Matrix Anal. & Appl., vol. 34, no. 3,
pp. 946–977, Apr 2013.

[8] M. Soltanolkotabi, E. Elhamifar, and E. J. Candès, “Robust
Subspace Clustering,” Annals of Statistics, vol. 42, no. 2, pp.
669—-699, 2014.

[9] M. Rahmani and G. Atia, “Coherence Pursuit: Fast, Simple,
and Robust Principal Component Analysis,” IEEE Trans. Sig-
nal Process., vol. 65, no. 23, pp. 6260–6275, Dec 2017.

[10] R. de Lamare and R. Sampaio-Neto, “Adaptive Reduced-Rank
Processing Based on Joint and Iterative Interpolation, Decima-
tion, and Filtering,” IEEE Trans. Signal Process., vol. 57, no. 7,
pp. 2503–2514, 2009.

[11] J. Chen, C. Richard, and A. H. Sayed, “Multitask Diffusion
Adaptation Over Networks With Common Latent Representa-
tions,” IEEE Journal of Selected Topics in Signal Processing,
vol. 11, no. 3, pp. 563–579, Apr 2017.

[12] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A Multi-
linear Singular Value Decomposition,” SIAM J. Matrix Anal. &
Appl., vol. 21, no. 4, pp. 1253–1278, 2000.

[13] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed.,
Johns Hopkins Univ. Press, Baltimore, MD, (1996).

[14] T. F. Chan, “Rank Revealing QR Factorizations,” Linear Alge-
bra and its Applications, vol. 88–89, pp. 67–82, Apr 1987.

[15] M. Gu and S. C. Eisenstat, “Efficient Algorithms for Comput-
ing a Strong Rank-Revealing QR Factorization,” SIAM J. Sci.
Comput., vol. 17, no. 4, p. 848–869, 1996.

[16] N. Halko, P.-G. Martinsson, and J. Tropp, “Finding Structure
with Randomness: Probabilistic Algorithms for Constructing
Approximate Matrix Decompositions,” SIAM Review, vol. 53,
no. 2, pp. 217–288, Jun 2011.

[17] M. Gu, “Subspace Iteration Randomization and Singular Value
Problems,” SIAM J. Sci. Comput., vol. 37, no. 3, pp. A1139–
A1173, 2015.

[18] A. Frieze, R. Kannan, and S. Vempala, “Fast Monte-Carlo
Algorithms for Finding Low-rank Approximations,” J. ACM,
vol. 51, no. 6, pp. 1025–1041, Nov. 2004.

[19] V. Rokhlin, A. Szlam, and M. Tygert, “A Randomized Al-
gorithm for Principal Component Analysis,” SIAM. J. Matrix
Anal. & Appl., vol. 31, no. 3, pp. 1100–1124, 2009.

[20] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou,
“Communication-optimal Parallel and Sequential QR and LU
Factorizations,” SIAM J. Sci. Comput., vol. 34, no. 1, p.
A206–A239, 2012.

[21] V. Chandrasekaran, S. Sanghavi, P. a. Parrilo, and A. S. Will-
sky, “Rank-Sparsity Incoherence for Matrix Decomposition,”
SIAM J. Opt., vol. 21, no. 2, pp. 572–596, 2009.

[22] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust Principal
Component Analysis?” Journal of the ACM, vol. 58, no. 3, pp.
1–37, May 2011.

[23] D. Calvetti, L. Reichel, and D. Sorensen, “An Implicitly
Restarted Lanczos Method for Large Symmetric Eigenvalue
Problems,” ETNA, vol. 2, pp. 1–21, 1994.

[24] J. Tropp, A. Yurtsever, M. Udell, and V. Cevher, “Practical
Sketching Algorithms for Low-Rank Matrix Approximation,”
SIAM J. Matrix Anal. & Appl., vol. 38, no. 4, pp. 1454–1485,
2017.

[25] M. F. Kaloorazi and R. C. de Lamare, “Subspace-Orbit
Randomized-Based Decomposition for Low-Rank Matrix Ap-
proximations,” in 26th European Signal Processing Confer-
ence (EUSIPCO), Sep 2018, pp. 2618–2622.

[26] M. F. Kaloorazi, Low-Rank Matrix Approximations and Appli-
cations, PhD Thesis, Pontifical Catholic University of Rio de
Janeiro, Brazil (2018).

[27] M. F. Kaloorazi and R. C. de Lamare, “Subspace-Orbit Ran-
domized Decomposition for Low-Rank Matrix Approxima-
tions,” IEEE Trans. Signal Process., vol. 66, no. 16, pp. 4409–
4424, Aug 2018.

[28] J. Dongarra, S. Tomov, P. Luszczek, J. Kurzak, M. Gates, I. Ya-
mazaki, H. Anzt, A. Haidar, and A. Abdelfattah, “With Ex-
treme Computing, the Rules Have Changed,” Computing in
Science and Engineering, vol. 19, no. 3, pp. 52–62, May 2017.

[29] D. Bertsekas, Constrained Optimization and Lagrange Multi-
plier Method, Academic Press, (1982).

[30] Z. Lin, R. Liu, and Z. Su, “Linearized Alternating Direction
Method with Adaptive Penalty for Low-Rank Representation,”
in NIPS, no. 1, 2011, pp. 1–9.

[31] K. C. Toh and S. Yun, “An Accelerated Proximal Gradient Al-
gorithm for Nuclear Norm Regularized Linear Least Squares
Problems,” Pac. J. Optim., vol. 6, no. 3, pp. 615–640, 2010.

[32] R. M. Larsen, Efficient Algorithms for Helioseismic Inversion,
PhD Thesis, University of Aarhus, Denmark (1998).

[33] E. Hale, W. Yin, and Y. Zhang, “Fixed-Point Continuation for
`1-Minimization: Methodology and Convergence,” SIAM J.
Opt., vol. 19, no. 3, pp. 1107–1130, 2008.

[34] J. A. Duersch and M. Gu, “Randomized QR with Column Piv-
oting,” SIAM J. Sci. Comput., vol. 39, no. 4, pp. C263–C291,
2017.

7479

		2019-03-18T11:04:20-0500
	Preflight Ticket Signature

