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ABSTRACT

We propose a novel randomized linear least squares solver
which is an improvement of Iterative Hessian Sketch and ran-
domized preconditioning. In the proposed Momentum-IHS
technique (M-IHS), Heavy Ball Method is used to accelerate
the convergence of iterations. It is shown that for any full
rank data matrix, rate of convergence depends on the ratio be-
tween the feature size and the sketch size. Unlike the Conju-
gate Gradient technique, the rate of convergence is unaffected
by either the condition number or the eigenvalue spectrum of
the data matrix. As demonstrated over many examples, the
proposed M-IHS provides compatible performance with the
state of the art randomized preconditioning methods such as
LSRN or Blendenpik and yet, it provides a completely differ-
ent perspective in the area of iterative solvers which can pave
the way for future developments.

Index Terms— Iterative Hessian Sketch, Momentum,
Randomized Preconditioning, Ill Condition, First Order Iter-
ative Solvers

1. INTRODUCTION

Least squares(LS) problem has ever increasing applications in
the era of data science. For a given full rank data matrix A ∈
Rn×d and a measurement vector b ∈ Rn, in the least squares
setting, solution to the following optimization problem yields
xLS ∈ Rd:

xLS = argmin
x∈Rd

1

2
‖Ax− b‖22 = (ATA)−1AT b. (1)

The case of n ≥ d is of central importance in big data appli-
cations. One efficient way of obtaining the xLS is to solve a
triangular system obtained through QR decomposition requir-
ingO(nd2) floating operations, which is prohibitively large in
big data applications. The main cause of this high complex-
ity is due to the calculation of the Hessian Matrix (ATA) in
eq. (1) and calculation of the R factor in the QR decompo-
sition of A. One remedy for reducing the required computa-
tion is to use the first order iterative techniques which require
only matrix-vector calculations at each iteration avoiding or-
der nd2 computations [1]. However, the required number of

iterations are highly sensitive to the condition number of ma-
trix A. If the largest singular value of A is known, then the
optimal and unimprovable convergence rate of O(1/k2) be-
longs to the Nesterov’s Accelerated Gradient Descent [2]. In
addition to the largest singular value, if the smallest singular
value is also known, then the optimal rate is achieved by the
Polyak’s Heavy Ball Method(HBM) [3]. Unfortunately, such
information on A is rarely available in practice. In the ab-
sence of this information, the Conjugate Gradient(CG) tech-
nique can be used to have the same convergence rate of the
HBM by tuning the required parameters adaptively through
additional calculations at each iteration [4]. Similarly, Saun-
der’s LSQR [5] which utilizes bidiagonalization via Givens
rotations shares the same convergence rate as well. Addition-
ally, if one knows the ellipsoid containing eigenvalues, the
Chehbyshev Semi-iterative (CS) technique has a similar con-
vergence rate with a significant advantage over the CG and the
LSQR. In the CS, there is no need for inner products which
allows parallelization in distributed systems. Although con-
vergence of the CS is slower than those of CG and LSQR, in
the distributed systems with high communication cost, where
data is stored in clusters, the convergence time of CS can be
much significantly less [6],[7]. Many other techniques can
also be added to this list [8],[1]. The common rate of conver-
gence of these techniques is:

‖xk − xLS‖ ≤
(√

κ− 1√
κ+ 1

)k

‖x0 − xLS‖, (2)

where κ is the condition number of ATA, which is defined as
the ratio of the largest singular value to the smallest singular
value ofATA [8], [9]. However, for ill conditionedAmatrices
with excessively large κ, this rate of convergence becomes
extremely slow.

Preconditioning is a linear mapping of the solution do-
main which aims to transform an ill conditioned problem to a
well conditioned problem. In the deterministic setting, find-
ing an appropriate preconditioning matrix has always been a
challenging task until the introduction of the Random Projec-
tion(RP) techniques [10]. To the best of our knowledge, the
RP techniques developed in [11] is utilized first by Rokhlin
to construct a preconditioning matrix for a CG-like iterative
solver [12]. He used the R factor in the QR decomposition
of a sketched matrix. Implementation of a similar idea re-
sulted in Blendenpik which is superior to some deterministic

7470978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



LAPACK solvers [13]. Also, LSRN uses RP to construct a
preconditioner, but it uses the right singular vectors instead
of the R factor in the QR decomposition and it utilizes the
Chebyshev technique as an iterative solver for parallelization
purposes [6]. Analysis of these algorithms, especially deriva-
tion of the the statistical bounds are only accessible by spe-
cialists in the field. In this work we propose a new technique,
M-IHS, which has comparable performance with the state-of-
the-art techniques while its derivation is highly accessible by
a large audience of practitioners.

Instead of using randomization in the preconditioning for
the first order solvers, RP can be utilized directly to solve
the least squares problem as well. In naive randomized least
squares techniques, both data matrix and measurements are
projected to lower dimensions in order to decrease the com-
putational complexity(see [14] and references therein). How-
ever, Pilanci showed that projection of both A and b is sub-
optimal and he proposed a novel method, called Iterative Hes-
sian Sketch (IHS), which approximates only the Hessian term
in eq. (1) [15]. Very recently an accelerated version of IHS is
proposed by using CG-like iterations [16]. Some efforts, also,
has been made to use RP in Nesterov’s Accelerated Gradient
Method which is known also as FISTA [17][18].

In the proposed M-IHS technique, IHS and HBM are
jointly used to improve the rate of convergence. Our main
contribution is to determine the momentum weights through
Marchenko-Pastur (MP) Law instead of an adaptive approach
as proposed in [16] which increases the computational com-
plexity of the iterations. Further, for a sketch size of m, we
proved that the convergence rate of the proposed M-IHS is√
d/m, which is completely independent of the data matrix

A. The computational complexity of the proposed M-IHS
technique is O(nd log(m) + md2 + (nd + d2) log(1/ε))
where ε is the desired accuracy. Furthermore, as presented
in the Section 2.2, for the regularized schemes, squared de-
pendencies like md2 and d2 can be avoided by using inexact
solvers for the subproblem.

2. SKETCH BASED ITERATIVE LS SOLVERS

We are interested in sketch matrices that satisfy E[STS] =

Id where S ∈ Rm×d. Amongst many, we specifically use
sketch matrices that are based on Randomized Orthonormal
Systems(ROS) which are constructed as follows:
• Choose an n-dimensional orthonormal transformation

matrix H ∈ Rn×n such as the Hadamard, Fourier, Hart-
ley or Cosine transformation matrix which can realize
matrix-vector products in n log(n) operations.

• Construct a diagonal matrix D ∈ Rn×n whose diagonal
elements are i.i.d. Rademacher random variables.

• Row vectors are s̃T =
√
neiHD with probability 1/n,

i = 1, . . . , n and ei ∈ Rn is ithcanonical basis.
2.1. The Naive IHS Technique

The objective function of least squares problem can be formu-
lated as a combination of the Hessian and the Jacobian term:

xLS = argmin
x∈Rd

1

2
‖A(x− x0)‖22 − 〈AT (b−Ax0), x〉, (3)

where x0 is any initial vector. In the IHS, only the Hessian
term is approximated and the solution is improved recursively
by Newton Method-like iterations:

xk+1 = argmin
x∈C

1

2
‖SA(x− xk)‖22 − 〈AT (y −Axk), x〉

= xk + (ATSTSA)−1AT (y −Axk).

The important point here is that instead of changing the sketch
matrix S at each iteration as described in [15], we propose to
use a single sketch matrix in all iterations with a tunable step
size:

xk+1 = xk + tk(ATSTSA)−1AT (y −Axk). (4)

The convergence rate of the damped IHS can be investigated
by finding the transformation matrix between the current and
the previous error vectors through the same approach in [9].
The l2-norm of the transformation matrix serves as a lower
bound for the convergence rate.

For this purpose, consider the following transformation
and recall that AT (AxLS − y) = 0 :

‖xk+1 − xLS‖2 = ‖xk + tk(ATSTSA)−1AT (y −Axk)− xLS‖2
= ‖(Id − tk(ATSTSA)−1ATA)(xk − xLS)‖2
≤ ‖ Id − tk(ATSTSA)−1ATA︸ ︷︷ ︸

T

‖2‖xk − xLS‖2 (5)

Therefore, we can write following improvement by using the
Gelfand Formula:

‖xk − xLS‖2 ≤ ‖T k‖2‖x0 − xLS‖2

≤
(
ρ(T )k + εk

)
‖x0 − xLS‖2,

where lim
k→∞

εk = 0 and ρ(T ) is the spectral radius of T . If
the spectral radius of T is bounded, then contraction ratio
(or the norm of transformation) can be bounded as well. To
find ρ(T ) , the largest and the smallest eigenvalues of ma-
trix (ATSTSA)−1ATA should be determined. Changing basis
by using (ATA)−1/2yields (ATA)1/2(ATSTSA)−1(ATA)1/2

which is a symmetric matrix similar to (ATSTSA)−1ATA. By
using compact SVD of A = UΣV T , where U ∈ Rn×d, V,Σ ∈
Rd×d, UTU = V TV = V V T = Id and Σ = diag(σ1, . . . , σd),
σ1 ≥ . . . ≥ σd ≥ 0, we obtain:

(ATA)1/2(ATSTSA)−1(ATA)1/2

= V ΣV T (V ΣUTSTSUΣV T )−1V ΣV T

= V (UTSTSU)−1V T .

Since V is a unitary matrix, spectral properties depends only
on the eigenvalues of (UTSTSU)−1 . The entries of SU have
the same probability distribution as the entries of Sbecause
the columns of U is an orthonormal set of vectors and en-
tries of S are zero mean, unit variance i.i.d. random vari-
ables. Hence, if we generate a sketch matrix S̃ ∈ Rm×d with
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the same techniques used for S, then SU will be statistically
equivalent to S̃.

Based on this observation, we need to know the largest
and the smallest eigenvalues of a sample covariance matrix of
S̃ ∈ Rm×d which is called as the Wishart matrix in statistics
[19]. By the MP Law, the largest and the smallest eigenvalues
of Wishart matrices converge to (1 ±

√
d/m)2, as m → ∞

while the ratio d/m remains the same [20], [21]). Therefore,
the largest and the smallest eigenvalues of (ATSTSA)−1ATA
asymptotically converge to 1/(1 ∓

√
d/m)2. The spectral ra-

dius ρ(T ) is:

ρ(T ) = max

{∣∣∣∣∣1− tk

(1 +
√
r)

2

∣∣∣∣∣ ,
∣∣∣∣∣1− tk

(1−
√
r)

2

∣∣∣∣∣
}
,

where r = d/m. Here, the following choice for tk yields the
minimum spectral radius

tk =
2 · (1 +

√
r)2(1−

√
r)2

(1 +
√
r)2 + (1−

√
r)2

=
(1− r)2

1 + r
, (6)

which remains constant during the iterations:

ρ(T ) =

∣∣∣∣∣1− (1− r)2

1 + r

/(
1 +
√
r
)2∣∣∣∣∣ =

2
√
r

1 + r
. (7)

In conclusion, the damped IHS converges with the following
exponentially decaying upper bound:

‖xk − xLS‖2 ≤
(

2
√
r

1 + r

)k

‖x0 − xLS‖2. (8)

2.2. The Proposed Momentum based M-IHS Technique

Momentum effect in iterations can be realized by taking a step
in the direction of a linear combination of the gradients of
both the objective function and the solution trajectory:

xk+1 = xk − αk∇f(xk) + βk(xk − xk-1),

where αkand βkare respective momentum weights. The
damped IHS iterations can alse be modified in the same way:

xk+1 = xk + αk(ATSTSA)−1AT (b−Axk) + βk(xk − xk-1)

= xk − αk(ATSTSA)−1ATA(xk − xLS) + βk(xk − xk-1).

Now, consider the following bipartite transformation:[
xk+1 − xLS

xk − xLS

]
= T

[
xk − xLS

xk-1 − xLS

]

T =

[
(1 + β)Id − α(ATSTSA)−1ATA −βId

Id 0

]
where momentum weights are kept constant during the itera-
tions. By using the same similarity transformation in [9],[4],
we can find a block diagonal form for the transformation ma-
trix T , so that we can determine its eigenvalues easily. For
this purpose, the following change of basis will be used:

T = P−1 diag(T1, . . . , Td)P, Ti :=

[
1 + β − αλi β

1 0

]

P =

[
U 0
0 U

]
Π, Πi,j =


1 i oddj = i,
1 i evenj = n+ i,
0 otherwise

where UΛUT is the eigenvalue decomposition of (ATSTSA)−1

ATA and λi is the ith eigenvalue. The characteristic poly-
nomial of each block is u2 − (1 + β − αλi)u + β = 0. If
β ≥ (1 −

√
αλi)

2, then both of the roots will be imaginary
and both will have a magnitude

√
β which will be the con-

traction ratio of the transformation. Note that β can be se-
lected to ensure this upper bound for all eigenvalues. For this
purpose, checking only the largest and the smallest λi values,
which are determined by the MP Law in the previous section,
is sufficient:

β ≥ max

{∣∣∣∣1− √
α

1 +
√
r

∣∣∣∣ , ∣∣∣∣1− √
α

1−
√
r

∣∣∣∣}2

. (9)

The lower bound on β can be minimized over α by choosing
α = (1− r)2, so that the contraction ratio reaches its smallest
value of β = r. Consequently, the resulting convergence rate
becomes:

‖xk+1 − xLS‖2 ≤ rk/2‖x0 − xLS‖2. (10)

If the convergence rates of the Naive IHS and the proposed
M-IHS, obtained in eq. (8) and eq. (10) respectively, are com-
pared, then an improvement of factor 2/(1 + r) can be ob-
served. Recall that the above analysis is valid only if a sin-
gle sketch is used in all iterations. A pseudo-algorithm of
the M-IHS can be seen on Algorithm 1. Iterations of the M-

Algorithm 1 M-IHS

Data: SA ∈ Rm×d, x0, A, b
β = d/m, α = (1− β)2

while until stopping criteria do
1. gk = AT (b−Axk)
2. (SA)TSAzk = gk (solve for z)
3. xk+1 = xk + αzk + β(xk − xk-1)

end

IHS do not require any inner products or norm calculations,
which avoids synchronization steps in parallel computing and
results in overwhelming advantages over the CG or the GM-
RES like iterative solvers in distributed or hierarchical mem-
ory systems (we refer the reader to Section 2.4 of [7]). Indeed,
M-IHS is equivalent to the CS with a preconditioner (SA)TSA

except for one improvement: momentum parameters are de-
termined more accurately by the MP Law in the M-IHS than
adaptive approach in CS, which results in faster convergence
as seen on Figure 3. This suggests that the M-IHS can take
CS’s place in those applications where parallel computation
is viable.

Moreover, due to the absence of inner products, the M-
IHS, even in sequential systems, requires fewer operations
than the CG or the LSQR as observed on Figure 3. Most im-
portantly, computation of vector zk in the second line of Algo-
rithm 1 can be realized by utilizing a symmetric CG technique
as a sub-solver, which avoids themd2 term in the complexity.
Avoiding md2 term may not be possible for the CG-like tech-
niques which use randomized preconditioning, because the R
factor in the QR decomposition or the V factor in the SVD

7472



require O(md2) operations. Note that an inexact sub-solver
strategy is more suitable if a regularization term is used. Oth-
erwise, convergence of the sub-solver would be exorbitantly
slow since SA is ill conditioned.

3. RESULTS AND COMPARISONS

In MATLAB simulations, we used the singular value profile
extracted from baart function of Hansen’s Toolbox [22]. Af-
ter scaling and shifting into desired interval, the singular val-
ues have been placed into SVD of data matrix A ∈ R216×500

whose entries are sampled from the distribution N (0, 9). We
did not include any noise in the simulations to focus on the
convergence behaviour of the algorithms. Additionally, re-
sults of all randomized schemes were averaged over 20 Monte
Carlo simulations. The obtained 2/(1+r) improvement by the
M-IHS over the Naive IHS can be seen on Figure 1. Fur-
thermore, as shown in Figure 2, when the condition num-
ber κ increases, convergence rate of the CG degrades consid-
erably while the performance of the proposed M-IHS tech-
nique remains unaffected. The same degradation also occurs
in Randomized Kaczmarz Method (RK)[23]. Although RK
performs better than CG for low κ values, its convergence
rate is influenced worse than CG by the increasing condition
number. In the simulations, LS version of CG implemented
by Saunders[24], and accelerated version of RK (ARK)[25]
that is based on Nesterov’s Technique were used. Operation
counts in the figures were obtained by Lightspeed Toolbox
[26]. LS solution was obtained by using the QR Decomposi-
tion with the Householder transformation.

Performance comparison of the proposed M-IHS with
Blendenpik and LSRN in MATLAB would not be fair, since
their released packages are implemented in C language. In-
stead, we compared, in Figure 3, the M-IHS with the CG and
the LSQR both of which use randomized preconditioning.
The R factor in the QR decomposition of the sketched matrix
was used as the preconditioner for the CG, LSQR and the
CS techniques, whereas it was used for M-IHS to solve the
linear system appeared in the second line of the Algorithm 1.
The same sketched matrix SA with sketch size m = 7d was
used for all the techniques and SA was created by using the
Discrete Cosine Transform. All randomization parts in the
compared techniques are the same for a fair comparison. In
all figures, the numbers between parenthesis in the legends
indicate the number of total iterations made by the technique
to obtain seen result.

4. CONCLUSION

By using the heavy ball method, a novel iterative solver for
the least square problem is proposed. The proposed M-IHS
technique converges significantly faster than the naive IHS
technique by using only one sketch matrix for all iterations
instead of multiple sketches. Furthermore, the computational
complexity of the proposed method is lower than the CG-like
techniques, and the convergence rate is not affected by the

spectral properties of the data matrix unlike any other first or-
der solvers including Kaczmarz’s. Also, the M-IHS can eas-
ily be implemented in parallel, and the complexity can be re-
duced further by using an iterative sub-solver in regularized
cases. As a future work, the impact of regularization on the
convergence rate will be investigated.
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