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ABSTRACT
Predicting the response of cancer cells to drugs is an impor-
tant problem in pharmacogenomics. Recent efforts in gen-
eration of large scale datasets profiling gene expression and
drug sensitivity in cell lines have provided a unique oppor-
tunity to study this problem. However, one major challenge
is the small number of samples (cell lines) compared to the
number of features (genes) even in these large datasets. We
propose a collaborative filtering like algorithm for modeling
gene-drug relationship to identify patients most likely to ben-
efit from a treatment. Due to the correlation of gene ex-
pressions in different cell lines, the gene expression matrix is
approximately low-rank, which suggests that drug responses
could be estimated from a reduced dimension latent space of
the gene expression. Towards this end, we propose a joint
low-rank matrix factorization and latent linear regression ap-
proach. Experiments with data from the Genomics of Drug
Sensitivity in Cancer database are included to show that the
proposed method can predict drug-gene associations better
than the state-of-the-art methods.

Index Terms— Gene expression, drug response, linear
regression, collaborative filtering, Genomics of Drug Sensi-
tivity in Cancer (GDSC).

1. INTRODUCTION

Selecting the right drugs is critical for cancer survival [1], but
existing methods that predict a patient’s response to a particu-
lar drug are not reliable enough. Resistance to chemotherapy
is a major issue, as time is of essence in many cases. There-
fore, it is of great interest to construct predictive models of
chemotherapy response that physicians can use to prescreen
the most promising treatment options. In recent years, the
field of pharmacogenomics has emerged as a very promising
area with challenging problems that can benefit from more
attention from the signal processing community.

Several large-scale studies have been recently conducted
to measure the gene expression (i.e. transcriptomic) profile of
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hundreds of cell lines and their sensitivity to tens to hundreds
of different drugs [2–4]. The results of these studies, which
are available in databases such as the Cancer Cell Line En-
cyclopedia (CCLE) [2], the Genomics of Drug Sensitivity in
Cancer (GDSC) [3], and the Cancer Therapeutics Response
Portal (CTRP) [4], bring predictive models linking gene ex-
pression to drug response closer within reach.

Numerous drug sensitivity prediction algorithms have
been proposed to characterize the relationship between tran-
scriptomic information and drug response [5–10]. Emad et
al. recently proposed a gene prioritization method called
Prioritization of Genes Enhanced with Network Information
(ProGENI) to rank genes that are closely related to a phe-
notype [9]. With the ranked genes, the authors employed
a kernel support vector machine (SVM) for drug sensitivity
prediction, and showed that ProGENI–identified genes can
better predict drug response compared to genes identified
by other widely used prioritization methods such as Pearson
correlation and Elastic Net (EN). In [10], through a collab-
orative effort between the National Cancer Institute (NCI)
and the Dialogue on Reverse Engineering Assessment and
Methods (DREAM) project, a comparison of 44 different
drug response prediction methods was undertaken, among
which the Bayesian multitask multiple Kernel learning exhib-
ited the best prediction performance. However, the training
was based on just 35 samples, which seems very limited.
To handle the cases where the number of genes is greater
than that of cell lines, the prevailing methods rely on some
sort of sparse regression for gene selection, to help resolve
the underdeterminacy that arises in even the simplest linear
prediction models [11, 12].

In this paper, we take a different approach. Motivated by
the observation that the gene expression matrix is approxi-
mately (very) low-rank, instead of relying on gene selection
to obtain a well-posed problem, we propose a collaborative
filtering (CF) approach based on joint low-rank biased matrix
factorization and linear prediction from the latent space. It
is worth highlighting that unlike existing methods that ignore
the bias in the expression of different genes, CF takes this bias
into account, which results in a more accurate model. We pro-
vide preliminary results that corroborate the effectiveness of
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the proposed method using real data from GDSC.

2. PROPOSED METHOD

One major challenge, even in large databases such as GDSC
[3], is the large number of features (tens of thousands of
genes) compared to the number of samples (hundreds of cell
lines). Therefore, the prediction of drug response from gene
expression is inherently under-determined. In the literature,
the common way to deal with this problem is to judiciously
select a small number of transcriptomic features through
sophisticated feature selection methods such as sparse re-
gression or other gene ranking strategies that utilize prior
knowledge in the form of protein-protein interactions (PPI’s)
and genetic interactions [9]. The existing data sets contain
both gene expression data of different cell lines and their
response to different drugs, where the response of each drug
is only measured for a subset of the cell lines. The exper-
imentally measured gene expression data is naturally noisy
and is not necessarily ‘centered’. We propose to model the
intrinsically low dimensionality of the gene expression data
while taking noise and bias into consideration, using a new
method based on collaborative filtering.

One way to tackle biases in the gene expression measure-
ments is to model the gene expression level gij as

gij = g̃ij + βj + nij (1)

where g̃ij denotes the actual gene expression corresponding
to the jth gene of the ith sample (cell line), nij is the additive
noise which here is assumed to be Gaussian distributed with
zero mean, and βj is the bias of the jth gene. The matrix form
of (1) is given by

G = G̃+ 1βT +N ∈ RM×L (2)

where (·)T is the transpose, 1 is a vector of length M with all
elements equal to 1,M is the number of training samples, L is
the number of transcriptomic features in a cell line, G(i, j) =
gij , G̃(i, j) = g̃ij and N(i, j) = nij .

To continue, we bring forth our motivation by an example
shown in Fig. 1, where singular values of a gene expression
matrix from the GDSC data set are plotted. This matrix con-
tains the expression of 17, 737 genes in 1018 cell lines. Fig.
1 shows that the gene expression matrix is dominated by a
few principal components, indicating that gene expressions
of different cell lines are strongly correlated and the gene ex-
pression matrix is approximately low-rank. Thus, we have

G̃ ≈ ABT (3)

where A = [a1, · · · ,aM ]T ∈ RM×F and B = [b1, · · · ,bL]
T

∈ RL×F are low-rank factors with F � min(M,L). There-
fore, (2) can be approximated by

G ≈ ABT + 1βT +N. (4)
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Fig. 1. Singular values of the gene expression matrix from
GDSC

The above observation implies that it is not necessary to
exploit all the transcriptomic features for drug response pre-
diction. On the contrary, the dimension of G̃ can be signif-
icantly reduced by a dimensionality reduction matrix B. As
a follow-up, we propose a novel joint dimensionality reduc-
tion and drug response prediction strategy, where the drug re-
sponse is estimated from the latent space of the gene expres-
sion matrix—A. Mathematically, we try to solve

min
A,B,w,β,e

∥∥G−ABT − 1βT
∥∥2
F
+ ρ ‖Aw − r+ e1‖22 (5)

where ‖ · ‖2 is the `2-norm, ‖ · ‖F is the Frobenius norm, r
is the drug response in the training set, w and e are parame-
ters for fitting the response from the latent space A such that
r = Aw+e1. The first term in (5) models the dimensionality
reduction and bias cancellation, the second regularization fits
the drug response from the latent space of G, and ρ controls
the strength of regularization. In (5), fixing any four variables,
the problem for the remaining variable is linear least squares
(LS). We therefore employ an alternating least squares (ALS)
strategy to solve (5). Specifically, at each iteration, the sub-
problem w.r.t. A is

min
A
‖Y1 −AX1‖2F (6)

where Y1 = [G − 1βT √
ρ(r − e1)], X1 = [BT √

ρw]
and the solution is

A = Y1X
T
1 (X1X

T
1 )
−1 (7)

with (·)−1 being the matrix inverse.
Since ABT + 1βT = [A 1][B β]T , B and β can be

updated simultaneously. The associated subproblem is

min
B,β

∥∥GT −
[
B β

]
X2

∥∥2
F

(8)
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where X2 = [A 1]T and the minimum is reached at

[B β] = GTXT
2 (X2X

T
2 )
−1. (9)

Fixing (A,B,β), the update for w and e is straightforward,
i.e., [

w

e

]
= (X2X

T
2 )
−1X2r. (10)

We iteratively update {A, [B,β], [w, e]} until the algorithm
converges. Convergence is monotonic in terms of the cost
function, by virtue of the conditionally optimal updates of
ALS.

So far, we have shown how to estimate the unknown vari-
ables in our model. However, it is still unclear how to use
(A,B,β,w) to predict drug response for new patients. It is
worth noting that A and w are not the parameters of interest,
instead, B and β are the “meat” and “bread”. To explain this
point, let us first showcase how to use B,β for dimensional-
ity reduction of a new cell line g ∈ RL×1 (note that we now
switch to use a column vector for the cell line). We then solve

min
a
‖g − β −Ba‖22 (11)

resulting in the reduced dimension gene expression vector

â = (BTB)−1BT (g − β) ∈ RF . (12)

Comparing (12) and (7), we see that A in (7) is updated
differently since it is a regularized LS that involves {r,w, e}
while â does not. Nevertheless, for real-data applications, the
new gene expression may not rigorously follow the proposed
model, which means that {w, e} estimated from ALS is not
properly paired with the new cell line â. Thus, estimating the
response from (âw + e) is not the best option.

To handle this issue, we need to recalculate w and e by
using a refined A obtained in the same manner as (12), i.e.,

Â = (G− 1βT )B(BTB)−1. (13)

Hence, by minimizing ‖Âw + e− r‖, we have[
ŵ

ê

]
= (X̂2X̂

T
2 )
−1X̂2r (14)

where X̂2 = [Â 1]T . The drug response is then estimated
through

r̂ = âT ŵ + ê. (15)

The overall procedure is summarized in Algorithm 1.
Remark: As we can see from (9), β is not simply a gene ex-
pression bias vector; it actually plays an important role in
finding an accurate dimensionality reduction matrix B and
assisting drug response estimation from the latent space.

Algorithm 1 Collaborative Filtering
1: function CF(G, r, F, ρ)
2: Randomly initialize B and w
3: Set ` = 1
4: while stopping criterion has not been reached do
5: A← (7)
6: [B β]← (9)
7: [wT e]T ← (10)
8: ` = `+ 1
9: end while

10: Refine A with (13) and [wT e]T with (14)
11: Given a new cell line g, reduce its dimension via (12)

and then compute the drug response using (15)
12: end function

Table 1. RMSE Comparison over 10 drugs
drug name CF OMP IHT EN

SN-38 0.2996 0.3012 0.3678 0.4956
TAK-715 0.2410 0.2460 0.2519 0.4568

Ruxolitinib 0.1967 0.2073 0.2144 0.3751
Ispinesib Mesylate 0.6228 0.6438 0.6871 1.1992

BX-912 0.4461 0.4732 0.5012 0.8986
Avagacestat 0.1241 0.1294 0.1285 0.2640
XMD14-99 0.1761 0.1845 0.1890 0.3412

PHA-793887 0.5477 0.5533 0.5752 1.0619
XMD15-27 0.1667 0.1713 0.1774 0.3310
Quizartinib 0.3568 0.3634 0.3760 0.7285

3. RESULTS

We compare the performance of of our CF-inspired approach
with state-of-the-art algorithms using real data from GDSC,
which is fully accessible at https://www.cancerrxgene.
org/downloads. We use the RMA-normalised basal gene
expression profiles of the cell lines released on March 2,
2017. Tthe drug response data that we use was released on
March 27, 2017, containing the biochemical half maximal
inhibitory concentration (IC50) values of different drugs for
each cell line.

For most of the cell lines in GDSC, the expression val-
ues of approximately 18, 000 genes are available, but the drug
that has been measured using the largest number of samples
includes approximately 1, 000 samples – which poses a chal-
lenge for training an accurate prediction model. Therefore, it
is necessary to prudently select a smaller subset of informa-
tive features for training while excluding the irrelevant ones.
Toward this end, we first employ the ProGENI algorithm [9]
to rank the genes for each drug and select the top 500 genes
to construct a smaller-size gene expression matrix. Then we
choose 70% of the data samples of a tested drug for training,
10% for validation and 20% for testing.
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In the first example, we compare CF with orthogonal
matching pursuit (OMP), iterative hard-thresholding (IHT)
and Elastic Net (EN) in terms of relative root mean square
error (RMSE). We choose 10 drugs (i.e., SN-38, TAK-
715, Ruxolitinib, Ispinesib Mesylate, BX-912, Avagacestat,
XMD14-99, PHA-793887, XMD15-27, Quizartinib) to ex-
amine the performance of different competitors and report
their RMSEs. Here, RMSE is averaged through 10 random
permutations and is calculated as

RMSE =
1

10

10∑
i=1

‖r− r̂i‖2/‖r‖2

where r̂i contains the drug response estimates of the testing
cell lines from the ith permutation. Since the rank F and
hyper-parameter ρ for CF are unknown, we vary F from 5 to
30 and ρ from 100 to 400, and choose {F, ρ} that minimizes
the Euclidean distance between the estimated and true drug
response vector of the validation set. Simulation results are
shown in Table 1, where CF has the smallest RMSE for all 10
drugs. Overall, OMP performs slightly better than IHT while
EN has the worst performance.

In the second example, we examine the performance of
CF on predicting drug sensitivity. We compare our method
with OMP and three classifiers from MATLAB Statistics and
Machine Learning Toolbox as baselines, i.e., logistic regres-
sion, kernel SVM (K-SVM) with Gaussian kernel function
and linear SVM (L-SVM). Here, we do not include IHT and
EN because their performance is worse than OMP. The drug
selected for comparison is SN-38. This drug has the largest
number of samples in the GDSC data set. There are 989 cell
lines tested with this drug, but only 956 of them have associ-
ated transcriptomic data, which means that the total number
of available samples is 965. Note that we define a threshold
such that a cell line with IC50 value smaller than the thresh-
old is identified as sensitive to the drug; otherwise, resistant.
Thus, given a threshold, the data set can be divided into two
parts corresponding to drug sensitive and resistant, respec-
tively. The IC50 values for this drug range from −8.1319 to
1.4428, where the smaller the IC50 value, the more sensitive
the cell line to this drug. Therefore, we vary the threshold
from −5.5 to −2.5 to compare the prediction performance of
different algorithms. Then given a threshold, we choose 70%
of the data samples from each of the two parts for training,
10% for validation and 20% for testing, such that the percent-
age of either resistant or sensitive samples is fixed in training,
validation and testing sets.

Similar to the previous example, we run 10 Monte Carlo
simulations with randomly partitioned training/validation/testing
sets and report the average prediction accuracy of the testing
set defined as

prediction accuracy =

∑N
i=1 δ(`i,

ˆ̀
i)

N
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Fig. 2. Prediction accuracy comparison on drug sensitivity.

where `i is the drug response label, ˆ̀i is the estimated label,
N is the size of the testing data and δ(a, b) = 1 if a = b and
0 otherwise. Also notably, for logistic regression and SVM,
in consideration of the limited training samples, we employ
OMP to further reduce the number of features by solving
min‖s‖0≤20 ‖Gs− r‖22, where the indices of the nonzero ele-
ments in s denote the selected features.

Fig. 2 shows the results, from which we see that CF has
the highest prediction accuracy under different thresholds. Its
performance is followed by OMP, logistic regression and L-
SVM. However, the K-SVM does not work well.

4. CONCLUSION

A novel CF algorithm has been proposed for drug response
prediction from gene expression. Simulations validated that
CF works better than many sparse regression methods (e.g.,
OMP, IHT and EN) and classical linear and nonlinear classi-
fication algorithms (e.g., logistic regression and SVM).

The CF method estimates the IC50 values rather than the
labels of drug sensitive/resistant. This can be valuable for
imputing missing IC50’s of cell lines for which the drug re-
sponse is not measured, and for understanding the relation-
ship between gene expression and drug response. Another
important advantage of our CF-based method is that it can be
used in the case of incomplete gene expression measurements
– i.e., even when the matrix G has many missing entries. The
only change in this case is that one needs to use weighted LS
or stochastic gradient updates within the main ALS algorithm,
as is well-known in the collaborative filtering literature.
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