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ABSTRACT

Dataset reshuffling across mobile devices allows for speeding up on-
device distributed machine learning, which however requires signif-
icant communication bandwidth. In this paper, we propose a pliable
data shuffling approach to significantly reduce the communication
cost for on-device distributed learning via joint data placement and
transmission design. This is achieved by establishing the novel inter-
ference alignment conditions and diversity constraints for data shuf-
fling to improve the statistical learning performance. Unfortunately,
the presented pliable data shuffling problem is a highly intractable
mixed combinatorial optimization problem, for which a novel sparse
and low-rank framework is developed, supported by the computa-
tionally efficient difference-of-convex (DC) algorithm. Numerical
results demonstrate that the proposed pliable data shuffling is able to
significantly reduce the communication bandwidth while achieving
desirable learning performance.

Index Terms— Distributed learning, data shuffling, wireless,
pliable index coding, sparse and low rank.

1. INTRODUCTION

With the explosive growth in the volume of data for machine learn-
ing, deploying algorithms on distributed workers has become the
prevalent choice in practice due to their substantial speedups gains
[1], supported by the state-of-art distributed machine learning frame-
works (e.g., Tensorflow [2]). In a typical distributed machine learn-
ing setting, i.e., master-worker architecture, the master aggregates
local model parameters from all the workers and then sends the ag-
gregation results to each worker periodically, it is shown that reshuf-
fling the training data across the workers allows for superior conver-
gence performance and better prediction accuracy [3, 4]. Further-
more, the rapid development of mobile edge computing [5] with the
growing computation and storage power of devices, provides oppor-
tunities for training a machine learning model distributed among a
large number of mobile devices. This also allows for privacy preser-
vation [6] since we do not need to send all the collected data to a
centralized cloud center. However, wireless network bandwidth be-
comes the significant bottleneck for distributed training on mobile
devices with low throughput, high latency, and poor network con-
nections. In this paper, we shall investigate a novel data shuffling
strategy for on-device distributed machine learning inspired by the
wireless pliable index coding [7], thereby significantly reducing the
communication cost.

Although data shuffling among devices brings statistical bene-
fits in terms of convergence rate and prediction accuracy, this per-
formance improvements come at a cost. Specifically, for each data
shuffling procedure, the entire dataset is communicated from the
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master to each worker, which results in a huge communication over-
head. To tackle this issue, index coding has been proposed to im-
prove the communication efficiency of data shuffling [3], which is
achieved by designing efficient data transmission schemes given the
data placement rules. In this scenario, the specific data point needs
to be delivered successfully for data shuffling based on index coding
[8]. However, in many distributed learning tasks, e.g., classification,
the statistical learning performance can be improved as long as each
worker are refreshed with a new data point [9], instead of deliver-
ing the specific data points like [3]. This key observation offers the
possibility to further reduce the communication cost for data shuf-
fling based on the principles of pliable index coding [10]. However,
the finite field pliable index coding approaches [10, 9] may not be
generalized to the wireless communication scenarios for on-device
distributed learning, where the transceivers are normally operated in
complex field [7]. In this paper, we instead propose a pliable index
coding approach for joint data placement and transmission scheme
design for wireless on-device distributed learning. This is achieved
by establishing a novel pliable interference alignment condition to
deliver data, as well as deriving a diversity constraint to avoid simi-
larity among the shuffled data, thereby achieving high communica-
tion efficiency with comparable statistical performance.

However, the pliable data shuffling problem turns out to be a
highly intractable mixed combinatorial optimization problem. In-
spired by the recent success of generalized sparse and low-rank mod-
els for wireless index coding problem [11, 12] and wireless pliable
index coding problem [7], we shall propose a novel sparse and low
rank optimization framework to solve the mixed combinational opti-
mization problem, which is able to assist efficient algorithm design.
However, the proposed sparse and low-rank optimization framework
raises a unique challenge due to the non-convex constraints includ-
ing the sparsity constraints coupled with a low-rank constraint. Al-
though `1-norm and nuclear norm relaxation is widely used as a con-
vex surrogate for `0-norm and the low-rank function, respectively,
these convex relaxation approaches can not ensure exact sparsity and
low-rank constraints. To address this issue, we further develop novel
difference-of-convex (DC) representations for the `0-norm and the
rank function, followed by developing the efficient DC algorithm
with convergence guarantees for solving the pliable data shuffling
problem. Furthermore, simulation results on real datasets illustrate
that the proposed pliable data shuffling strategy achieves comparable
statistical performance for on-device distributed learning compared
to index coding based data shuffling scheme, while significantly re-
ducing the communication cost.

2. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the on-device distributed learning sys-
tem, followed by the communication-efficient pliable data shuffling
scheme to improve the learning performance.
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2.1. On-Device Distributed Learning System

Consider the on-device distributed learning system, as shown in
Fig. 1, which consists of a single-antenna access point (AP) and
K single-antenna mobile devices [13]. The AP has access to the
entire dataset {W1, · · · ,WM} of size M data points. Each mobile
device is equipped with a cache of size S. We assume that the
dataset can not be fully stored at each device, i.e. S < M , otherwise
there is no need for data shuffling. The K devices collaboratively
perform a distributed learning task to learn a model parameterized
by z. This is achieved by iteratively performing local updates at
each device and then updating the global model at the AP. Specifi-
cally, let Vk ⊂ {1, · · · ,M} be the index set of data points cached
at mobile device k, and then the available data points set can be
represented as W[Vk] = {Wj , j ∈ Vk}. At epoch t, initialized by
the global parameter zt from AP, the k-th device carries out local
computation based on its cached data points W[Vk] and uploads its
local outcome ztk to AP. The AP aggregates all the local outcomes
to obtain a new global model parameter via the aggregation function
zt+1 = g(zt1, · · · ,ztK), and then broadcasts it to each device as the
initial value for the (t+ 1)-th epoch.

Fig. 1: On-device distributed learning system.

To improve the statistical learning performance, including the
faster convergence rate and higher prediction accuracy, the dataset
normally needs to be reshuffled across the devices [3, 4]. How-
ever, the statistical benefits come at the cost of heavy communica-
tion overheads between the AP and mobile devices, since the entire
dataset is communicated from AP to each mobile device during the
dataset shuffling. To address this communication challenge, index
coding has been proposed to improve the communication efficiency
of data shuffling [3]. Specifically, the index coding based data shuf-
fling approach is achieved by: (i) randomly selecting data points for
each device, i.e., data placement; and (ii) sending the correspond-
ing data points to each device by the index coding approach [8], i.e.,
data transmission. To further reduce the communication costs, in
this work, we shall propose a novel pliable data shuffling approach
for joint data placement and data transmission design based on the
principles of pliable index coding [7, 10]. This is based on the key
observation that, in many distributed learning problems (e.g., clas-
sification), the statistical learning performance can be improved as
long as the data points at each device are refreshed with a new data
point [9], instead of the specific data points.

2.2. Pliable Data Shuffling

Let hk ∈ C denote the channel coefficient between the AP and mo-
bile device k. We encode data points Wi into a vector x ∈ Cr of
length r. Therefore, the received signal at the k-th mobile device
over the r channel uses is given by

yk =

M∑
i=1

hkxi + nk, (1)

where nk ∼ CN (0, σ2
kIr) is the additive isotropic white Gaussian

noise at device k. Here, we consider a quasi-static fading channel
model in which channel coefficients remain unchanged over r time
slots [11].

In this paper, we restrict the encoding and decoding schemes to
be linear and leverage the side information at each mobile device to
help transceiver design. Without loss of generality, let si ∈ C be
the representative scalar for data point Wi. The transmitted signal
of the data point Wi after linear precoding is thus xi = visi, where
vi ∈ Cr is the precoding vector for data point Wi. Likewise, let
uk ∈ Cr be the decoding vector at mobile device k. Each device k
decodes a data point from the received signal as follows:

z̃k = uH
kyk = hk

M∑
i=1

uH
kvisi + uH

knk. (2)

The index coding based data shuffling scheme requires each de-
vice decode a specific data point based on the random data place-
ment. This makes devices get a nearly “fresh” data sample, yield-
ing better statistical performance [3]. However, in many distributed
learning problems (eg., classification [9]), the learning performance
can be improved as long as each device can decode a new data point
that is not cached at its local storage unit [9]. This key observation
offers new opportunities to further reduce communication costs.

Specifically, to decode a new data point at device k, we impose
the following pliable interference alignment condition for the pre-
coding and decoding vectors [7]:

uH
kvj 6= 0, for some j /∈ Vk, (3)

uH
kvi = 0, ∀i 6= j, i /∈ Vk, (4)

which implies one of the desired data points Wj is preserved and all
other messages from the received signal are eliminated. For nota-
tional simplicity, let Ik({uk,vi}) := {j /∈ Vk|uH

kvj 6= 0}, then
the above pliable interference alignment condition can be written as
|Ik| = 1 for device k.

The data shuffling in each epoch is accomplished by multiple
transmissions, and for each transmission it is not necessary to impose
that all mobile devices update exact one data point [9]. We thus relax
the pliable interference alignment condition for all devices as

|Ik({uk,vi})| ≤ 1, k = 1, · · · ,K. (5)
If |Ik| = 1, then mobile device k is able to decode a new data point
successfully and shall replace an old data points by the new one. On
the other hand, if |Ik| = 0, then mobile device k will do nothing dur-
ing this transmission. After multiple rounds of transmission, mobile
devices have updated its cache data points for next epoch.

Furthermore, the high similarity in data among mobile devices
will cause performance degradation [1, 9]. We thus impose an ex-
tra constraint, i.e., diversity constraint, such that each data point
can only be distributed to at most w mobile devices (1 ≤ w ≤
K). Specifically, for the j-th data point, let Dj({uk,vi}) :=
{k|uH

kvj 6= 0, j /∈ Vk, k = 1, · · · ,K} denotes the set of devices
that will decode the j-th data point. Therefore, we impose

|Dj({uk,vi})| ≤ w, j = 1, · · · ,M, (6)
to reduce the correlation of shuffled data across the mobile devices.

Given the channel uses r and diversity constraint (6), our goal
is to maximize the number of decodable data points at the devices,
thereby improving the statistical learning performance of distributed
learning. This pliable data shuffling problem thus can be formulated
as follows:

maximize
{uk},{vi}

K∑
k=1

|Ik({uk,vi})|

subject to |Ik({uk,vi})| ≤ 1, k = 1, · · · ,K,
|Dj({uk,vi})| ≤ w, j = 1, · · · ,M,

(7)

which is a mixed combinatorial and highly intractable optimization
problem. In the next section, we shall propose a sparse and low-rank
optimization framework to facilitate efficient algorithms design.
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3. SPARSE AND LOW-RANK OPTIMIZATION FOR
PLIABLE DATA SHUFFLING

In this section, we propose a sparse and low-rank optimization ap-
proach to solve the pliable data shuffling problem (7).

3.1. Sparse and Low-Rank Optimization Framework

Let Xki = uH
kvi, ∀k = 1, · · · ,K, i = 1, · · · ,M . By defining

the K ×M matrix X = [Xki], we have the rank of matrix X as
rank(X) = r to represent the channel uses. Therefore, the relaxed
pliable interference alignment condition (5) can be rewritten as the
following sparsity constraint

‖xk,Vc
k
‖0 ≤ 1, , k = 1, · · · ,K, (8)

where Vck is the complementary set of Vk, i.e., Vck := {1, · · · ,K}\Vk,
and xk,Vc

k
is the subvector of the k-th row of matrix X , which only

keeps the elements in the index set Vck. Similarly, the diversity
constraint (6) can be formulated as the following sparsity constraint

‖xCcj ,j‖0 ≤ w, j = 1, · · · ,M, (9)

where Cj := {k : j ∈ Vk} ⊆ [K] and xCcj ,j is the subvector of
the j-th column of matrix X , which only keeps the elements in the
index set Ccj .

Therefore, to support efficient algorithm design for the proposed
pliable data shuffling problem (7), we propose the following sparse
and low-rank optimization approach

P : maximize
X∈RK×M

K∑
k=1

‖xk,Vc
k
‖0

subject to ‖xk,Vc
k
‖0 ≤ 1, k = 1, · · · ,K,

‖xCcj ,j‖0 ≤ w, j = 1, · · · ,M,

rank(X) ≤ r.

(10)

Note that we only need to consider problem P in real field with-
out loss of any performance in terms of eliminating interference
and channel uses, since the encoding and decoding vector can be
restricted to the real field [11]. Although the sparse and low-rank
optimization problem P is still nonconvex, we will show that it en-
joys algorithmic advantages.

3.2. Problem Analysis

Sparse and low-rank optimization plays a key role in various sce-
narios in signal processing [14], wireless communication [15], dis-
tributed machine learning [16] and high-dimensional data analysis
[17]. Despite the non-convexity of `0-norm and low rank function, a
number of computationally efficient numerical algorithms have been
developed. In particular, `1-norm relaxation is widely used as a con-
vex surrogate for `0-norm, while the low-rankness is often induced
by its convex surrogate nuclear norm. However, these approaches
can not induce exact sparsity and low-rankness, which is required
in our problem P . To address this issue, we shall develop novel
DC representations for the `0-norm and the rank function, thereby
guaranteeing the exact sparsity and low-rankness constraints.

4. DC ALGORITHM FOR SPARSE AND LOW-RANK
OPTIMIZATION

In this section, we develop a difference-of-convex (DC) algorithm
for solving the sparse and low-rank optimization problem P via the
novel sparse and low-rank representations via DC functions .

4.1. DC Representation

To derive the DC representation for the sparse and low-rank func-
tions, we need a couple of definitions.

Definition 1 ( Largest-k `2-norm[18]) For an integer k ∈ {1, · · · , n},
the largest-k `2-norm of x ∈ Rn denoted by 9x9k,2, is defined as
the square root of the sum of the largest k entries in square value,
i.e.,

9x9k,2 = (x2π(1) + x2π(2) + · · ·+ x2π(k))
1
2 ,

where π is an arbitrary permutation such that x2π(1) ≥ x2π(2) ≥
· · · ≥ x2π(n).

Definition 2 (Ky Fan 2-k norm [19]) For an integer 1 ≤ k ≤
min{m,n}, the Ky Fan 2-k norm of matrix X ∈ Rm×n is defined
as the `2-norm of the sub-vector formed by the largest-k singular
values of X . That is,

9X9k,2 =

(
k∑
i=1

σ2
i (X)

)1/2

,

where σi(X) is the i-th largest singular value of matrix X .

We thus express `0-norm as a DC function [18]:

‖x‖0 ≤ k ⇐⇒ ‖x‖22 − 9x92
k,2 = 0. (11)

Furthermore, the rank constrain in problem P can also be expressed
as a DC function [16]:

rank(X) ≤ k ⇐⇒ ‖X‖2F − 9X92
k,2 = 0. (12)

We finally arrive at the DC representation for the sparse and low-
rank constraints in problem P , i.e., ‖xk,Vc

k
‖22 − 9xk,Vc

k
92

1,2 =

0, k = 1, · · · ,K, ‖xCcj ,j‖
2
2 − 9xCcj ,j9

2
w,2 = 0, j = 1, · · · ,M ,

and ‖X‖2F − 9X92
r,2 = 0.

By further relaxing the objective function in (10) to
∑K
k=1 ‖Xk,Vc

k
‖∞,

we propose the following DC programming approach to solve prob-
lem P:

minimize
X∈RK×M

ϕ(X)−
∑K

k=1
‖xk,Vc

k
‖∞

subject to ‖X‖2F ≤ c,
(13)

where ϕ(X) = γ(‖X‖2F − 9X92
r,2) + ρ

∑K
k=1(‖xk,Vc

k
‖22 −

9xk,Vc
k
92

1,2) + λ
∑M
i=1(‖xCcj ,j‖

2
2 − 9xCcj ,j9

2
w,2), and the con-

straint ‖X‖2F ≤ c with c > 0 is added to avoid unboundedness of
the objective value in problem (13), while it doesn’t change the rank
and sparsity pattern of matrix X . If the value of ϕ(X) in prob-
lem (13) achieves zero, then we are successful in finding a feasible
solution to the pliable data shuffling problem P . To simplify the
notation, let

g(X) := γ‖X‖2F + ρ
K∑
k=1

‖Xk,Vc
k
‖22 + λ

M∑
j=1

‖XCcj ,j‖
2
2,

h(X) := γ 9 X 92
r,2 +

K∑
k=1

(‖xk,Vc
k
‖∞ + ρ 9 Xk,Vc

k
92
1,2)

+ λ
M∑
j=1

9XCcj ,j 92
w,2 .

The DC program (13) can be rewritten as
minimize
X∈RK×M

g(X)− h(X)

subject to ‖X‖2F ≤ c.
(14)

4.2. DC Algorithm

Although problem (14) is still non-convex, we shall develop a sim-
plified form of DC algorithm [20] to solve it efficiently. At each
iteration, we solve a convex subproblem which is defined by lin-
earizing the concave term −h(X) in problem (14). Specifically, the
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subproblem at iteration t is given by

minimize
Xt∈RK×M

g(Xt)− 〈Xt,St−1〉,

subject to ‖Xt‖2F ≤ c,
(15)

where St−1 is a subgradient of h(X) at Xt−1, i.e.,

St−1 ∈ ∂h(Xt−1) = γ · ∂ 9 Xt−1 92
r,2 +λ

M∑
j=1

∂ 9 xt−1
Ccj ,j

92
w,2

+

K∑
k=1

(ρ · ∂ 9 xt−1
k,Vc

k
92

1,2 +∂‖xk,Vc
k
‖∞).

(16)
One subgradient of the square of Ky Fan 2-k norm 9X92

r,2 at
point X is given as [16] ∂ 9 X92

r,2 = 2
∑r
i=1 σiuiv

T
i , where

{σi}ri=1, {ui}ri=1 and {vi}ri=1 are the r largest singular values and
the corresponding left and right singular vectors of X . For a vector
x ∈ Rd, the subdifferential of the square of the largest-k `2-norm is
given as [18]

∂ 9 x92
k,2 =

{
z : zi =

{
2xi, if π(i) ≤ k
0, if π(i) ≥ k

}
. (17)

A subgradient of s ∈ ∂‖x‖∞ at point x can be computed by as-
signing the sign of the largest magnitude of x to the corresponding
element of s and 0 to others [21].

The overall iterates of our proposed DC algorithm are listed in
Algorithm 1. Note that we need to solve the convex subproblem

Algorithm 1: DC algorithm for solving problem (14)

Input : Side information Vk, k = 1, · · ·K, rank r, X0, c
for t = 1, 2, · · · do

Compute a subgradient: St−1 ∈ ∂h(Xt−1)
Solve the convex subproblem (15), and obtain Xt

end

(15) at each iteration, however, this subproblem exists closed form
solution which is given by

Xt =

{
Zt/‖Zt‖F , if ‖Zt‖F > c,
Zt, otherwise,

(18)

where

Zt
i,j =

{
1

2(γ+ρ+λ)
St−1
i,j , if j ∈ Vci ,

1
2γ

St−1
i,j , otherwise.

(19)

The proposed DC algorithm involves computing a subgradient
by (16) and solving a convex subproblem (15) at each iteration. The
computational complexity of computing the subgradient via (16) is
dominated by the truncated SVD of X . That is, we only need to cal-
culate the largest r singular values and their corresponding singular
vectors of matrix X , for which the computational cost is O(rKM)
[22]. Furthermore, the closed form solution (19) to the subproblem
(15) is computationally trivial. Therefore, the proposed DC algo-
rithm is very efficient with overall computational time complexity
O(trKM), where t is the required number of iterations to achieve
desired accuracy. Furthermore, given rank parameter r and diver-
sity constraint parameter w, the proposed Algorithm 1 for solving
Problem (14) converges to critical points from arbitrary initial points
[20].

5. SIMULATION RESULTS

To demonstrate the efficiency of the proposed pliable data shuffling
scheme, we conduct a classification experiment for the on-device
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Fig. 2: Experiments of SVM classifier on CIFAR10 dataset.

distributed learning system over CIFAR10 dataset [23], which con-
tains 60, 000 samples of size of 32× 32 color images in 10 different
classes. For the sake of simplicity, we study the multiclass support
vector machine (SVM) classifier. We train an SVM classifier via
the distributed stochastic gradient descent method [24] using 10000
samples as the training set, and then apply the classifier to the in-
dependent testing set with size of 10000. The number of mobile
devices is 10 and the cache size of each device is set to 10. Without
loss of generality, we take 100 training samples as one data point.
That is, each mobile device can store 1000 training samples in total.

For our proposed pliable data shuffling scheme, we set the di-
versity constraint parameter w = 2, constant parameter c = 1 and
the regularizer parameter γ = ρ = λ = 106. We solve the data
shuffling problem (14) under channel uses r = 4 and r = 1, re-
spectively. We compare our proposed data shuffling scheme with no
shuffling scheme and random shuffling scheme, which is chosen as
our benchmark. For the benchmark, we divide the training set into
10 groups with 10 data points in each, and randomly select one group
for each mobile device without replacement. Once the data points is
selected for mobile devices, the transmission procedure can be mod-
eled as solving a index coding problems [3, 25] to minimize channel
uses, and we implement index coding using alternating projection
method in [25].

At each epoch, we carry out 10 times data shuffling across the
mobile devices. When each device receives a new data point, it will
randomly delete a data point from its storage. We illustrate the rel-
ative prediction accuracy (normalized by the random classification
accuracy) in Fig. 2a. The accumulated number of channel uses for
the benchmark and the proposed pliable data shuffling are shown in
Fig.2b. Each point is averaged for 100 times. Fig.2a show that data
shuffling significantly improves the relative testing accuracy com-
pared with the no shuffling scheme. Furthermore, for channel uses
r = 4 and r = 1 in problem (14), the average accumulated channel
uses of our proposed pliable data shuffling scheme are 44% and 11%
of the benchmark as demonstrated in Fig. 2b, respectively, but only
with a slightly loss of prediction accuracy.

6. CONCLUSION

In this paper we propose a pliable data shuffling approach to jointly
design data placement and communication scheme for distributed
learning among mobile devices. This is achieved by establishing the
novel interference alignment conditions for communication-efficient
data delivery, and the diversity constraints to avoid similarity during
the data shuffling procedure. To solve the resulting mixed combi-
national optimization problem for pliable data shuffling, we propose
a novel sparse and low-rank framework, for which an efficient DC
algorithm was further developed via the DC representation of the
sparse and low-rank functions. Numerical results demonstrate that
the proposed approach significantly reduces the communication cost
for on-device distributed training.
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