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ABSTRACT

This paper focuses on principal components analysis (PCA), which
involves estimating the principal subspace of a data covariance ma-
trix, in the age of big data. Massively large datasets often require
storage across multiple machines, which precludes the use of cen-
tralized PCA solutions. While a number of distributed solutions to
the PCA problem have been proposed recently, convergence guar-
antees and/or communications overhead of these solutions remain a
concern. With an eye towards communications efficiency, this pa-
per introduces two variants of a distributed PCA algorithm termed
distributed Sanger’s algorithm (DSA). Principal subspace estima-
tion using both variants of DSA is communication efficient because
of its one time-scale nature. In addition, theoretical guarantees are
provided for the asymptotic convergence of basic DSA to the prin-
cipal subspace, while its “accelerated” variant is numerically shown
to have faster convergence than the state-of-the-art.

Index Terms— Distributed data, decentralized learning, orthog-
onal iteration, principal component analysis, Sanger’s algorithm

1. INTRODUCTION

Dimensionality reduction techniques such as principal component
analysis (PCA) [1], sparse PCA [2], dictionary learning [3], etc.,
play an important role in reducing the complexity of large-scale
machine learning problems. Among these techniques, PCA—which
requires estimating the principal subspace of a data covariance
matrix—is one of the oldest and most widely used ones due to its
simplicity and good performance in various applications. In recent
years, computational challenges arising due to high volumes of data
have resulted in a renewed interest in further reducing the com-
plexity of PCA. The resulting methods employ techniques ranging
from stochastic optimization [4] and randomized algorithms [5] to
parallel computing [6] in order to develop computationally efficient
solutions for PCA. A majority of these developments, however, have
been made under the assumption of co-located data.

Our focus in this paper is on solving the PCA problem from a
data covariance matrix that is distributed across multiple machines,
internet-of-things devices, etc. Such scenarios are becoming increas-
ingly common in the era of “big data.” While a number of methods
have recently been developed to solve this “distributed PCA” prob-
lem [7–17], convergence guarantees and/or communications over-
head of these solutions remain a concern.

1.1. Our Contributions

Distributed iterative algorithms, even when they are guaranteed to
converge to the correct solution, can be communication inefficient
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in two ways. First, they may require exchange of large messages
among the physical entities (nodes) in each iteration. Second, they
may have a “two time-scale” nature with the inner time scale requir-
ing large number of iterations for each outer time-scale iteration.
Our main objective in this paper is development of communication-
efficient algorithms for the distributed PCA problem that neither
require exchange of large messages nor are two time scale. To
this end, our main contributions are: (i) formulation of two related
one time-scale methods for distributed PCA, termed distributed
Sanger’s algorithm (DSA) and accelerated distributed Sanger’s al-
gorithm (ADSA);1 (ii) asymptotic convergence analysis of DSA;
and (iii) numerical experiments that highlight the effectiveness of
the proposed algorithms in distributed PCA.

1.2. Related Work

Several formulations of the distributed PCA problem have been stud-
ied in the literature. One such formulation involves the use of a
central processor to coordinate distributed processing [12–14, 16].
Such works do not generalize to the fully decentralized setting be-
ing considered in this work. Another formulation of the distributed
PCA problem, while being fully decentralized, involves estimating
only a subset of the dimensions of the principal subspace at each
node [7, 8, 10, 15]. Such partial distributed estimation of the princi-
pal subspace also does not generalize to the setting of this paper, in
which the complete principal subspace is being sought at each node.

In terms of works that coincide with the distributed setting of
this paper, [9, 11] rely on the consensus averaging protocol [20] to
obtain an approximation of the data covariance matrix at each node.
This translates into exchange of d × d matrices among neighboring
nodes in each iteration of consensus averaging, which has high com-
putational and communications overhead in high-dimensional set-
tings. While [11] also proposes an alternative to this approach that
requires sharing of only d × k matrices among the neighbors, this
alternative requires computationally expensive eigenvalue decompo-
sition of a d × d matrix at each node in every iteration. Such com-
putational and communication inefficiencies are avoided in [17, 21],
which develop and analyze numerical methods-based distributed al-
gorithms for principal subspace estimation. (While [17, 21] limit
their algorithmic developments to one-dimensional subspaces us-
ing the power method [22], it is straightforward to extend them to
higher-dimensional subspaces using the orthogonal iteration [22].)
Unlike our proposed algorithms, however, these works have a two
time-scale nature in the sense that each algorithmic iteration requires
multiple consensus averaging iterations.

Finally, since the PCA problem can be formulated as nonconvex
optimization on the Stiefel manifold, this work has connections to
the literature on distributed nonconvex optimization. Among such

1The term “accelerated” here should not be interpreted in the sense of
heavy-ball [18] or Nesterov’s acceleration [19]; rather, it simply means that
ADSA converges faster than DSA in experimental evaluations.
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works, some only guarantee convergence to first-order stationary
points [23, 24], while the convergence results in others do not ap-
ply to the constrained setting of the PCA problem [25, 26].

Notation and Organization: We denote vectors and matrices by
lower- and upper-case bold letters, respectively. The superscript (.)T

denotes the transpose operation, U(.) defines an upper-triangular op-
eration that sets all elements of a matrix below the diagonal to zero,
and ‖.‖F denotes the Frobenius norm. The rest of the paper is or-
ganized as follows. In Section 2, we mathematically formulate the
distributed PCA problem. Section 3 describes the proposed algo-
rithms, while Section 4 provides convergence analysis of one of the
algorithms. We provide numerical results in Section 5 to show effi-
cacy of the proposed methods and conclude in Section 6.

2. PROBLEM FORMULATION

Consider a random vector y ∈ Rd with mean E[y] = 0 and covari-
ance matrix Σ := E[yyT]. Principal component analysis (PCA) ef-
fectively reduces to the task of finding the k-dimensional subspace,
k � d, spanned by the top-k eigenvectors of Σ [1]. This task is
carried out in practice by first estimating Σ from independent and
identically distributed (i.i.d.) samples of y. Given a dataset with
N i.i.d. samples {yl}Nl=1, the sample covariance matrix is given by
C = 1

N

∑N
l=1 yly

T
l = 1

N
YYT, where Y :=

[
y1 · · · yN

]
denotes the d×N data matrix. The PCA problem can now be posed
as the following optimization problem:

X∗ = arg min
X∈Rd×k:XTX=I

[
f(X) := ‖C−XXTC‖2F

]
. (1)

Significant efforts in recent years have gone into efficiently solv-
ing (1) and understanding properties of different solvers when the
data matrix Y (equivalently, the sample covariance C) is available
at a single location. In contrast, we focus in this paper on the dis-
tributed setup in which Y is split across multiple entities (data cen-
ters, machines, sensors, etc.). Abstractly, consider a connected net-
work of M entities that is modeled by an undirected graph G :=
(V, E). Here, V = {1, 2, . . . ,M} denotes the set of “nodes” in the
network and E denotes the set of graph edges with (i, j) ∈ E if
and only if nodes i and j are connected to each other. It is then as-
sumed that the data matrix Y is column-wise distributed across the
M nodes as Y =

[
Y1 Y2 · · · YM

]
, where Yi ∈ Rd×Ni de-

notes the Ni samples available at the i-th node and N :=
∑M
i=1Ni

(see Fig. 1 for a graphical description of this distributed setup).
Our goal in this distributed setup is to obtain Xi ∈ Rd×k at

each node i such that X1 ≈ X2 ≈ · · · ≈ XM ≈ X∗. Since the full
sample covariance C is not available at each node, the solution to
this problem does not correspond to (1). Nonetheless, using Ci :=
(1/Ni)YiY

T
i to denote the local sample covariance and noting that

the global sample covariance C =
∑M
i=1 Ci, we can transform (1)

into the distributed PCA problem as follows:

min
X,{Xi}Mi=1:X

TX=I

[
M∑
i=1

fi(X) :=

M∑
i=1

‖Ci −XXTCi‖2F

]
subject to X1 = X2 · · ·XM = X. (2)

Our main objective here is to obtain communication-efficient solu-
tions to (2) that neither require exchange of large messages between
nodes nor are two time scale in nature.

Fig. 1: A graphical representation of the distribution of data samples
across M entities being considered here for distributed PCA.

3. PROPOSED ALGORITHMS

Both (1) and (2) are nonconvex optimization problems due to the
nonconvexity of the constraint set. A number of approaches have
been proposed over the years to solve such problems. In the cen-
tralized case, one possible solution to the PCA problem is to solve a
convex relaxation of (1) [4]. Such approaches require O(d2) mem-
ory and computation, which can be prohibitive in high-dimensional
settings. The iterates in such approaches also have O(d2) size; this
translates into high communication costs for their distributed vari-
ants. Numerical methods such as the orthogonal iteration (OI) [22]
and Sanger’s method [27] offer a different means of solving (1);
the O(dk) memory and computation requirements of these methods
make them better candidates for distributed solutions.

The algorithms we propose in this paper for solving the dis-
tributed PCA problem (2) are based on Sanger’s method. Unlike
numerical methods-based prior works on (column-wise) distributed
PCA [17, 21], both of which rely on two time-scale approaches that
can have high communication costs, we focus on developing one
time-scale distributed variants of Sanger’s method. To this end, we
first motivate the development of the proposed algorithms.

3.1. Motivation

Originally, Sanger’s method was developed to solve the centralized
PCA problem in the case of streaming data, where a new data sample
yl, l = 1, 2, . . . , arrives at a machine in each epoch l. We leverage
this streaming nature of Sanger’s method to obtain one time-scale
algorithms for distributed PCA in the batch setting. The rationale
behind this approach is simple: since E[yty

T
t ] = E[YiY

T
i ] = Σ,

the column-wise distributed data setting can be seen as a mini-batch
variant of the streaming data setting.

In terms of specifics of our algorithms, given a sample covari-
ance matrix C such that E[C] = Σ, the centralized Sanger’s method
has the following iterate update:

Xt+1 = Xt + αtH(Xt), (3)

where we term H(Xt) :=
(
CXt − XtU

(
(Xt)TCXt

))
as the

Sanger direction, while αt is the step size. There is rich literature
on converting such iterative methods into their respective distributed
algorithms; examples include distributed optimization, distributed
estimation, distributed inference, etc. [28–32]. The main ingredient
in all these algorithms is to alternate between two steps: (i) Com-
bine step, in which nodes exchange information (iterate values) with
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their neighbors and combine their local iterates with the ones re-
ceived from their neighbors; and (ii) Update step, in which nodes
update their local iterates using only their respective local data. The
main contributions of such works lie in showing that the resulting
distributed algorithms achieve consensus (i.e., all nodes will have the
same iterate values eventually) and, in addition, the consensus value
is the same as the centralized solution. Our distributed variants of
(3) will be based on similar principles of combine and update.

3.2. Two Variants of Distributed Sanger’s Algorithm

Since node i in the network only has access to its local sample co-
variance Ci, it can only compute its local Sanger’s direction

Hi(X
t
i) = CiX

t
i −Xt

iU((Xt
i)

TCiX
t
i), (4)

where Xt
i denotes the subspace estimate at node i in iteration t. Our

first solution for the distributed PCA problem, termed distributed
Sanger’s algorithm (DSA), involves updating the local subspace es-
timate by adding a linear weighted combination of subspace esti-
mates from neighboring nodes to this local Sanger’s direction scaled
by the step size. Details of DSA are given in Algorithm 1, in which
the weight matrix W = [wij ] is a doubly stochastic matrix conform-
ing to the network topology [20] and Ni denotes the neighborhood
of node i. While DSA shares algorithmic similarities with first-order
distributed optimization methods [28,29], our challenge is character-
izing its convergence behavior for distributed PCA.

Algorithm 1: Distributed Sanger’s Algorithm (DSA)
Input: Y1,Y2, . . .YM ,W, {αt}, k
Initialize: ∀i,X0

i ← Xinit : XT
initXinit = I

1: for t = 0, 1, 2, . . . do
2: Update the subspace estimate at node i:

Xt+1
i ←

∑
j∈Ni∪{i} wijX

t
j + αtHi(X

t
i)

3: end for
Return: Xt

i, i = 1, 2, . . . ,M

It is well known that first-order distributed methods resembling
Algorithm 1 only achieve consensus (and exactly converge) with di-
minishing step sizes. A constant step size, on the other hand, is
desirable in iterative distributed methods for faster convergence. Re-
cent works in first-order distributed optimization have resorted to
different strategies for achieving exact solutions using constant step
sizes [26, 30, 33]. Using similar ideas, we now present a variant of
DSA—termed accelerated DSA (ADSA)—in Algorithm 2 that is ex-
pected to converge and achieve consensus using a constant step size.
While we do not have a proof of convergence for ADSA, numerical
experiments reported in Sec. 5 confirm that ADSA is far superior to
both DSA and the state-of-the-art in distributed PCA.

4. CONVERGENCE ANALYSIS OF DSA

In this section, we provide convergence analysis of DSA for the case
of diminishing step size. In the interest of space, we only provide a
sketch of the proof of our main result.

Theorem 1. Let λi denote the i-th eigenvalue of sample covariance
C and suppose λ1 ≥ · · · ≥ λk > λk+1 ≥ · · · ≥ λd ≥ 0. Then,
assuming a connected graph G, a doubly stochastic, symmetric W,
and a diminishing step size αt, DSA iterates achieve consensus as
t → ∞ as long as they stay bounded, i.e., supi,t ‖Xt

i‖F ≤
√
kB

Algorithm 2: Accelerated DSA (ADSA)

Input: Y1,Y2, . . .YM ,W,W̃ := (I + W)/2, α, k
Initialize: ∀i,X0

i ← Xinit : XT
initXinit = I

1: X1
i ←

∑
j∈Ni∪{i} wijX

0
j + αHi(X

0
i )

2: for t = 0, 1, . . . do
3: Update the subspace estimate at node i:

Xt+2
i ← Xt+1

i +
∑
j∈Ni∪{i}(wijX

t+1
j − w̃ijXt

j) +

αHi(X
t+1
i )− αHi(X

t
i)

4: end for
Return: Xt

i, i = 1, 2, . . . ,M

for some constant B > 0. Further, the consensus subspace is the
principal subspace of the sample covariance matrix.

Proof Sketch: Under the assumption of bounded iterates, it is
straightforward to show that the local Sanger’s direction for ev-
ery node in each iteration is bounded by a constant

ηi ≡ ηi(B, k, λ1(Ci), λd(Ci)),

i.e., ‖Hi(X
t
i)‖F ≤ ηi. Next, let β denote the second-largest eigen-

value of W, and define η :=
∑M
i=1 ηi and the mean network iterate

as X
t

= 1
M

∑M
i=1 Xt

i . It can then be shown that

∀i, t, ‖Xt
i −X

t‖F ≤ βt
√
Mk + η

t−1∑
s=0

αsβ
t−1−s. (5)

Since 0 < β < 1, this upper bound on ‖Xt
i − X

t‖F converges
to zero for a diminishing step size as t → ∞. Thus, DSA iterates
achieve consensus asymptotically.

In order to prove the second claim of the theorem, notice that we
have for large enough t the following relationship:

∀i, Xt+1
i = X

t
+ αtHi(X

t
) + εti, (6)

where εti
t→ 0. It then follows that

X
t+1

= X
t
+αtH(X

t
) +

1

M

M∑
i=1

εti
t−→ X

t
+αtH(X

t
). (7)

The expression on the right-hand side of (7) is the centralized
Sanger’s iteration, which converges to the principal subspace of the
sample covariance C under the assumption of the spectral gap.

5. NUMERICAL RESULTS

In this section, we report the results of numerical experiments on
both synthetic and real-world data to compare and contrast the per-
formances of DSA and ADSA against each other as well against two
other state-of-the-art distributed PCA algorithms. The distributed
algorithms used for comparison purposes are (i) latePCA proposed
in [11], which requires consensus averaging on the entire covariance
matrix, and (ii) distributed OI, which is an extension of the two time-
scale distributed power method proposed in [17]. While both DSA
and ADSA are one time-scale algorithms for distributed PCA, we ex-
pect ADSA to significantly outperform DSA because of the reasons
stated in Sec. 3. In addition, we expect ADSA to result in significant
communication savings—especially in high-dimensional settings—
in comparison with latePCA and distributed OI. The results reported
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Fig. 2: Comparison between latePCA, distributed OI, DSA, and
ADSA in terms of communications efficiency, i.e., decrease in av-
erage estimation error as a function of number of data units commu-
nicated by each node to its neighbors.

in the following make use of the performance measures of estimation
error and communication efficiency, which are explained below.

Estimation error: We measure the estimation errors between the
desired principal subspace and the estimated subspaces at individual
nodes in terms of the principal angles between them. Given the true
subspace X∗ ∈ Rd×k and an estimate X ∈ Rd×k, the cosines of the
angles between X and X∗ are given by the singular values {σj}kj=1

of XTX∗, which leads us to the following distance metric:

ρ(X∗,X) =
1

k

k∑
j=1

(
1− σ2

j (XTX∗)
)
. (8)

Since we are dealing with M nodes in the distributed PCA problem,
we report our results in terms of the average estimation error that is
defined as

ρtave =
1

M

M∑
i=1

ρ(X∗,Xt
i).

Communications efficiency: We quantify the communications
efficiency of a distributed PCA algorithm by plotting its average
estimation error as a function of units of data exchanged by individ-
ual nodes, where one unit of data is defined to be equivalent to one
d-dimensional vector.

5.1. Synthetic Data Experiments

We use synthetic data experiments to compare the communications
efficiency of DSA, ADSA, latePCA, and distributed OI. The setup
corresponds to an Erdos–Renyi graph with M = 10 nodes and con-
nectivity parameter p = 0.5. Local data at each node corresponds
to a total of 1,000 i.i.d. samples drawn from a 200-dimensional mul-
tivariate Gaussian distribution (i.e., d = 200 and Ni = 1000). We
focus on estimating the five-dimensional (k = 5) principal subspace.
The step sizes used for DSA and ADSA are αt = 0.8√

t
and α = 0.5,

respectively. The final results are reported in Fig. 2 for two different
values of the spectral gap ∆ :=

λk+1

λk
of the sample covariance ma-

trix C. The number of consensus averaging iterations tc for latePCA
and distributed OI are also listed in the figure.

We can draw a few conclusions from Fig. 2. First, as expected,
ADSA performs significantly better than DSA. This is not sur-
prising, given that we are using a diminishing step size for DSA.
Second, the spectral gap seems to be affecting the performance of
ADSA more than the other methods. Third, ADSA is the most
communication-efficient method for ∆ = 0.7, while it remains
communication efficient up to a certain point for ∆ = 0.86, after
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Fig. 3: Performance comparison of distributed OI, DSA, and ADSA
in terms of convergence behavior as a function of number of algo-
rithmic iterations.

which latePCA appears to outperform ADSA. Theoretical analysis
of ADSA is expected to shed more light on this behavior.

5.2. Real-world Data Experiments

We now turn our attention to distributed PCA from real-world data,
corresponding to MNIST and CIFAR10 datasets. The setup corre-
sponds to an Erdos–Renyi graph with M = 20 nodes and connec-
tivity parameter p = 0.5. Both the datasets have 60, 000 samples,
which are uniformly divided across the 20 nodes (i.e., Ni = 3000).
We have d = 784 in the case of MNIST, while d = 1024 for CI-
FAR10. The step sizes used for DSA and ADSA, respectively, are
0.2/
√
t and 0.005 for MNIST and 120 and 20 for CIFAR10. We

once again limit ourselves to estimating the five-dimensional (k = 5)
principal subspaces. The significant communications overhead of
latePCA in these high-dimensional datasets precluded its use in these
experiments. The final results for DSA, ADSA, and distributed OI
(with different number tc of consensus iterations per outer iteration)
are provided in Fig. 3, which also includes results obtained using
centralized OI for comparison purposes.

It can be seen from Fig. 3 that ADSA outperforms DSA and
distributed OI for both the datasets, with the performance gap sig-
nificantly larger for CIFAR10 dataset. We also notice from this fig-
ure that increasing the number of consensus iterations for distributed
OI results in lower average estimation error at the expense of slower
convergence. Finally, the convergence rate of ADSA seems to match
the linear convergence of centralized OI, which suggests possible op-
timality of ADSA in high-dimensional distributed PCA problems.

6. CONCLUSION

In this paper, we investigated two variants of a communications-
efficient algorithm that can be used to solve the distributed principal
component analysis problem. We provided convergence analysis
of the basic variant of the proposed algorithm, termed distributed
Sanger’s algorithm (DSA), while the usefulness of its acceler-
ated variant, termed accelerated DSA (ADSA), was demonstrated
through numerical experiments on both synthetic and real-world
data. Possible directions for future work that builds on top of this
paper include convergence analysis of ADSA as well as characteri-
zation of the rate of convergence of both DSA and ADSA.
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