
AUTOMATIC ASSESSMENT OF SPOKEN LANGUAGE PROFICIENCY
OF NON-NATIVE CHILDREN

Roberto Gretter1, Marco Matassoni1, Katharina Allgaier1,2, Svetlana Tchistiakova1,3,4∗, Daniele Falavigna1

(1) Fondazione Bruno Kessler, Trento (Italy), (2) University of Heidelberg (Germany),
(3) University of Trento (Italy), (4) University of Saarland (Germany)

{gretter,matasso,falavi}@fbk.eu,katharina@allgaier-um.de,stchistiakova@gmail.com

ABSTRACT

This paper describes technology developed to automatically grade
Italian students (ages 9-16) on their English and German spoken lan-
guage proficiency. The students’ spoken answers are first transcribed
by an automatic speech recognition (ASR) system and then scored
using a feedforward neural network (NN) that processes features ex-
tracted from the automatic transcriptions. In-domain acoustic mod-
els, employing deep neural networks (DNNs), are derived by adapt-
ing the parameters of an original out of domain DNN. Automatic
scores are computed for low level proficiency indicators - such as:
lexical richness, syntax correctness, quality of pronunciation, dis-
course fluency, semantic relevance to the prompt, etc - defined by
human experts in language proficiency. A set of experiments was
carried out on a large set of data collected during proficiency evalua-
tion campaigns involving thousands of students, manually scored by
human experts. Obtained results are presented and discussed.

Index Terms— language proficiency, non-native speech, code
switching, multilingual speech recognition

1. INTRODUCTION

The problem of automatic scoring of second language (L2) learning
proficiency has been largely investigated in the past in the frame-
work of computer assisted language learning (CALL). Approaches
have been proposed for two input modalities: written and spoken.
In both cases, specific competencies of the human learners are pro-
cessed by some suitable proficiency classifiers. The final goal is to
measure L2 proficiency according to some standard scale. A well-
known scale is the Common European Framework of Reference for
Languages (Council of Europe, 2001). The CEFR defines 6 levels
of proficiency: A1 (beginner), A2, B1, B2, C1 and C2.

This work1 addresses automatic scoring of L2 learners, focusing
on different linguistic competences, or “indicators,” related both to
the content (e.g. grammatical correctness, lexical richness, semantic
coherence, etc) and to the speaking capabilities (e.g. pronunciation,
fluency, etc). Refer to Section 2 for a description of the indicators
adopted in this work. The learners are Italian students, between 9
and 16 years old, who study both English and German at school.
The students took proficiency tests by answering question prompts
provided in written form. Responses included typed answers and
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spoken answers. The developed system is based on a set of fea-
tures (see Section 4.2) extracted both from the input speech signal
and from the automatic transcriptions of the spoken responses. The
features are classified with feedforward neural networks, trained on
labels provided by human raters, who manually scored the “indica-
tors” of a set of about 29, 000 spoken utterances (about 2, 550 profi-
ciency tests). Training and test data used in the experiments will be
described in Section 2.

The task is very challenging and poses many problems which
are only partially considered in the scientific literature. From the
ASR perspective major difficulties are represented by: a) recogni-
tion of both child and non-native speech, i.e. Italian pupils speaking
both English and German, b) presence of a large number of spon-
taneous speech phenomena (hesitations, false starts, fragments of
words, etc.), c) presence of multiple languages (English, Italian and
German words are frequently uttered in response to a single ques-
tion), d) presence of a significant level of background noise due to
the fact that the microphone remains opened for a fixed time inter-
val (e.g. 20 seconds), and e) presence of non-collaborative speakers
(students often joke, laugh, speak softly, etc.).

Relation to prior work. Scientific literature is rich in ap-
proaches for automated assessment of spoken language proficiency.
Performance is directly dependent on ASR accuracy which, in turn,
depends on the type of input, read or spontaneous, and on the speaker
ages, adults or children (see [1] for an overview of spoken language
technology for education).

Automatic assessment of reading capabilities of L2 children was
widely investigated in the past at both sentence level [2] and word
level [3]. More recently, the scientific community started addressing
automatic assessment of more complex spoken tasks, requiring more
general communication capabilities by L2 learners. The AZELLA
data set [4], developed by Pearson, includes 1, 500 spoken tests,
each double graded by human professionals, from a variety of tasks.
The work in [5] describes a latent semantic analysis (LSA) based
approach for scoring the proficiency of the AZELLA test set, while
[6] describes a system designed to automatically evaluate the com-
munication skills of young English students. Features proposed for
evaluation of pronunciation are described for instance in [7].

Automatic scoring of L2 proficiency has also been investigated
in recent shared tasks. One of these [8] addressed a prompt-response
task, where Swiss students learning English had to answer to both
written and spoken prompts. The goal is to label student spoken
responses as “accept” or “reject”. The winners of the shared task
[9] use a deep neural network (DNN) model to accept or reject input
utterances, while the work reported in [10] makes use of a support
vector machine originally designed for scoring written texts.

Finally, it is worth mentioning that the recent end-to-end ap-
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proach [11] (based on the usage of a bidirectional recurrent DNNs
employing an attention model) performs better than the well known
SpeechRaterTMsystem [12], developed by ETS for automatically
scoring non-native spontaneous speech in the context of an on-
line practice test for prospective takers of the Test Of English as a
Foreign Language (TOEFL)2.

With respect to the previously mentioned works, the novelties
proposed in this paper are as follows. Firstly, we introduce a unique
multi-lingual DNN, for acoustic modeling (AM), trained on English,
German and Italian speech from children and adults. This model
copes with multi-lingual spoken answers, i.e. utterances where the
student uses or confuses words belonging to the three languages
at hand. A common phonetic lexicon, defined in terms of units of
the International Phonetic Alphabet (IPA), is adopted for transcrib-
ing the words of all languages. Moreover, spontaneous “in-domain”
speech data (details in Section 3) are included in the training mate-
rial to model frequently occurring speech phenomena (e.g., laughs,
hesitations, background noise). We also propose a novel method
to compute acoustic features using the phonetic representation and
likelihoods output by the ASR system. We employ both our best
non-native ASR system, and ASR systems trained only on native
English/German data to generate these features (see subsection 4.2).

Experimental results reported in the paper (see Section 5) show
that: a) the usage of the multilingual DNN is effective for transcrib-
ing non-native children’s speech, b) the usage of feedforward NNs
allows us to classify each indicator with an average classification ac-
curacy between around 60% and around 67%, and c) no large differ-
ences in classification performance have been observed among the
different indicators (i.e. the set of adopted features performs pretty
well for all indicators).

2. DESCRIPTION OF THE DATA

2.1. Evaluation campaigns on trilinguism

In Trentino (Northern Italy), a series of campaigns is underway for
testing linguistic competencies of multilingual Italian students tak-
ing proficiency tests in English and German. A set of three evalua-
tion campaigns were planned, taking place in 2016, 2017/2018, and
2020. Each one involves about 3000 students (ages 9-16), belonging
to 4 different school grade levels, and three proficiency levels (A1,
A2, B1). The 2017/2018 campaign was split into a group of 500 stu-
dents in 2017, and 2500 students in 2018. Table 1 highlights some
information about the 2018 campaign. Several tests aimed at assess-
ing the language learning capabilities of the students were carried
out by means of multiple-choice questions, which can be evaluated
automatically. However, a detailed linguistic evaluation cannot be
performed without allowing the students to express themselves in
both written sentences and spoken utterances, which typically re-
quire the intervention of human experts to be scored. In this paper
we will focus only on the spoken part of these proficiency tests.

Table 2 reports some statistics extracted from the spoken data
collected in 2017/2018. We manually transcribed a part of the 2017
spoken data to train and evaluate the ASR system. 2018 spoken data
were used to train and evaluate the grading system. Each spoken
utterance received a total score from human experts, computed by
summing up the scores related to the following 6 individual indica-
tors: answer relevance (with respect to the question); syntactical
correctness (formal competences, morpho-syntactical correctness);
lexical properties (lexical richness and correctness); pronuncia-
tion; fluency; communicative skills (communicative efficacy and

2TOEFL: https://www.ets.org/toefl

Table 1. Evaluation of L2 linguistic competences in Trentino in
2018: level, grade, age and number of pupils participating in the
English (ENG) and German (GER) tests.

CEFR Grade, School Age #Pupils #ENG #GER
A1 5, primary 9-10 508 476 472
A2 8, secondary 12-13 593 522 547
B1 10, high school 14-15 1086 1023 984
B1 11, high school 15-16 364 310 54

tot 9-16 2551 2331 2057

argumentative abilities).
Since every utterance was scored by only one expert, it was not

possible to evaluate any kind of agreement among experts. How-
ever, according to [13] and [14], inter-rater human correlation varies
between around 0.6 and 0.9, depending on the type of proficiency
test. In this work, correlation between an automatic rater and an ex-
pert one is between 0.53 and 0.61, indicating a good performance
of the proposed system. For future evaluations more experts are ex-
pected to provide independent scoring on the same data sets, so a
more precise evaluation will be possible. At present it is not possi-
ble to publicly distribute the data.

Table 2. Spoken data collected during the 2017 and 2018 evaluation
campaigns. Column “#Q” indicates the total number of different
(written) questions presented to the pupils.

Year Lang #Pupils #Utterances Duration #Q
2017 ENG 511 4112 16:25:45 24
2017 GER 478 3739 15:33:06 23
2018 ENG 2331 15770 93:14:53 24
2018 GER 2057 13658 95:54:56 23

2.2. Manual transcription of spoken data

In order to create adaptation and evaluation sets for ASR, we man-
ually transcribed part of the 2017 data. Guidelines for the manual
annotation required a trade-off between transcription accuracy and
speed. We defined guidelines, where: a) only the main speaker has
to be transcribed; presence of other voices (school-mates, teacher)
should be reported only with the label “@voices”, b) presence of
whispered speech was found to be significant, so it should be explic-
itly marked with the label “()”, c) badly pronounced words have to
be marked by a “#” sign (without trying to phonetically transcribe
the pronounced sounds), and d) code switched words (i.e. speech in
a different language from the target language) has to be reported by
means of an explicit marker, like in: “I am 10 years old @it(io ho
già risposto)”.

Most of 2017 data was manually transcribed by students from
two Italian linguistic high schools (“Curie” and “Scholl”) and
double-checked by researchers. Part of the data were independently
transcribed by pairs of students in order to compute inter-annotator
agreement, which is shown in Table 3 in terms of Word Accuracy
(WA), using the first transcription as a reference (after removing
hesitations and other labels related to background voices and noises,
etc.). The low level of agreement reflects the difficulty of the task,
although it should be noted that the transcribers themselves were
non-native speakers of English/German. ASR results will also be
affected by this uncertainty.
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Table 3. Inter-annotator agreement between pairs of students, in
terms of Word Accuracy. Students transcribed English utterances
first and German ones later.

High Language #Transcribed #Different Agreement
school words words (WA)
Curie English 965 237 75.44%
Curie German 822 139 83.09%
Scholl English 1370 302 77.96%
Scholl German 1290 226 82.48%

For both ASR and grading NN experiments, data from the stu-
dent populations (2017/2018) were divided by speaker identity into
training and evaluation sets, with proportions of 2

3
and 1

3
, respec-

tively (students across the training and evaluation sets do not over-
lap). Table 4 reports data about the spoken data set. The id All
identifies the whole data set, while Clean defines the subset in which
sentences containing background voices, incomprehensible speech
and fragment words were excluded.

Table 4. Statistics about the spoken data sets (2017) used for ASR.

id # of duration tokens
utt. total avg total avg

Ger Train All 1448 04:47:45 11.92 9878 6.82
Ger Train Clean 589 01:37:59 9.98 2317 3.93
Eng Train All 2301 09:03:30 14.17 26090 11.34
Eng Train Clean 916 02:45:42 10.85 6249 6.82
Ger Test All 671 02:19:10 12.44 5334 7.95
Ger Test Clean 260 00:43:25 10.02 1163 4.47
Eng Test All 1142 04:29:43 14.17 13244 11.60
Eng Test Clean 423 01:17:02 10.93 3404 8.05

3. ASR SYSTEM

3.1. Acoustic model

The recognition of non-native speech, especially in the framework
of multilingual speech recognition, is a well-investigated problem.
Past research has tried to model the pronunciation errors of non-
native speakers [15] both by using non-native pronunciation lexicons
[16, 17, 18] or by adapting acoustic models with either native data
and non native data [19, 20, 21, 22].

For the recognition of non-native speech, we demonstrated in
[23] the effectiveness of adapting a multilingual deep neural network
(DNN) trained on recordings of native speakers to children between
9 and 14 years old.

In this work we have adopted a more advanced neural network
architecture for the multilingual acoustic model, using a time-delay
neural network (TDNN) and the popular lattice-free maximum mu-
tual information training (LF-MMI) [24]. The corresponding recipe
features i-vector computation, data augmentation via speed pertur-
bation, data clean up and the mentioned MMI training.

Acoustic model training is performed on the following datasets:
• GerTrainAll and EngTrainAll in-domain sets;
• Child, collected in the past in our labs, formed by speech

of Italian children speaking: Italian (ChildIt subset [25] ), English
(ChildEn [26]) and German (ChildDe). The children were instructed

to read words or sentences in Italian, English or German, respec-
tively; it contains 28,128 utterances in total, from 249 child speakers
between 6 and 13 years old, comprising 44.5 hours of speech.
• ISLE, the Interactive Spoken Language Education corpus

[27], consisting of 7,714 read utterances from 23 Italian and 23
German adult learners of English, comprising 9.5 hours of speech.

3.2. Language models for ASR

To train effective LMs in this particular domain, we needed sen-
tences capable of representing the simple language spoken by the
learners. For each language, we created three sets of text data. The
first included simple texts, collected by grabbing data from Internet
pages containing foreign language courses or sample texts (about
113K words for English, 12K words for German). The second in-
cluded training data from the written responses on the written portion
of the proficiency tests, acquired during the 2016, 2017 and 2018
evaluation campaigns (see Table 2) (about 393K words for English,
247K words for German). This data underwent a cleaning phase, in
which we corrected the most common errors (i.e. ai em→ I am, be-
couse→ because, seher→ sehr, brüder→ bruder...) and removed
unknown words. The third included the manual transcriptions of the
2017 spoken data set (see Section 2.2) (26K words for English, 10K
words for German). In this case, we cleaned the data by deleting all
markers indicating presence of extraneous phenomena, except for
hesitations, which were retained.

This small amount of data (about 532K words for English and
269K words for German in total) was used to train two 3-gram LMs.

3.3. ASR performance

Table 5 reports word error rates (WERs) obtained on the 2017 test set
(see Table 4) using acoustic models trained on both out-of-domain
data and in-domain data, which contributes to modeling spontaneous
speech and spurious speech phenomena (laughing, coughing, . . . ).

A common phonetic lexicon, defined in terms of the units of the
International Phonetic Alphabet (IPA), is shared across the three lan-
guages (Italian, German and English) to allow the usage of a single
acoustic model. The Table also reports results achieved on a clean
subset of the test corpus, which was created by removing sentences
with unreliable transcriptions, and spurious acoustic events.

Table 5. WER results on 2017 spoken test sets.

GerTestAll GerTestClean EngTestAll EngTestClean
42.6 37.5 35.9 32.6

4. PROFICIENCY ESTIMATION

4.1. Scoring system

The classification task consists of predicting the scores assigned by
human experts to the spoken answers. For each utterance, 6 scores
are given according to the proficiency indicators (described in sec-
tion 2). The scores are in the set {0, 1, 2} where 0 indicates not-
passed, 1 almost-passed and 2 passed.

For estimating each individual score, we employed feed forward
NNs, using the corresponding scores assigned to each sentence by
the experts as targets. In all cases the score provided by the system
corresponds to the index of the output node with the maximum value.
All NNs are trained using the features described below, and are char-
acterized by three layers of dimension equal to the feature size; they
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use ReLU as activation function, and SGD and AdaGrad for the
optimizer. The learning rate is set to 0.05.

Questions associated with the answers are hierarchically clus-
tered according to: a) the language, b) the proficiency level (i.e. A1,
A2 and B1) and c) two sessions, S1 containing common questions of
proficiency tests (e.g. how old are you?, where do you come from?,
etc) and S2 containing specific questions (e.g. describe your visit to
Venice, etc), and d) a question identifier. NNs used for classification
follow this subdivision.

4.2. Classification features

The features used to score the indicators are derived both from the
automatic transcriptions of the spoken answers of the students and
from the speech signal.

To extract features from the transcriptions we use a set of LMs
trained over different types of text data, namely, out-of-domain gen-
eral texts (for English, transcriptions of TED talks [28] - around 3
million words; for German, news - around 1 million words), and
in-domain texts containing the “best” written/spoken data, collected
during the previously mentioned evaluation campaigns carried out
in the years 2016, 2017 and 2018. Best data are selected among
those that, in the training part, got the highest scores by the experts.
To compute feature vectors we use 20 language models, obtained by
computing four n-gram LMs (estimated by varying the the size of n-
grams, from 1 to 4) over five different training data sets of decreasing
size, as follows: a) out-of-domain text data, b) all in-domain data, c)
in-domain data that share the same CEFR proficiency level, d) in-
domain data that share the same session identifier, and e) in-domain
data that share the same question identifier. In this way, we assume
we know, for each test sentence to score, the language, the intended
proficiency level, and the session/question identifiers.

For each test sentence formed by NW words, of which NOOV

are out-of-vocabulary (OOV), we compute the following 5 features
using each LM (taking inspiration for features from the works of
[29, 30, 12, 9, 10]):

a) log(P )
NW

, that is, the average log-probability of the sentence,

b) log(POOV )
NOOV

, that is, the average contribution of OOV words to
the log-probability of the sentence,

c) log(P )−log(POOV )
NW

, that is, the average log-difference between
the two above probabilities,

d) NW − Nbo, where Nbo is the number of back-offs applied
by the LM to the input sentence (this difference is related to the
frequency of n-grams in the sentence that have also been observed
in the training set),

e) NOOV , the number of OOVs in the sentence.
Note that if word counts NW or NOOV are equal to zero (i.e.

both P and POOV are not defined), the corresponding average log-
probabilities are replaced by -1.

In this way we compute 5 × 4 × 5 = 100 features for each in-
put sentence (five data sets × four n-gram levels × five features).
To this set we add 11 more transcription-based features, i.e.: the
total number NW of words in the sentence, the number of content
words, the number of OOVs and the percentage of OOVs wrt a ref-
erence lexicon, the numbers of words used in Italian, in English and
in German, the number of words that had to be corrected by our in-
house spelling corrector adapted to this task, the number BoW (Bag
of Words) of content words that match the most frequent ones of the
“best” answers in the training data, BoW divided by all words in the
sentence and BoW divided by all the content words in the sentence.
This results in a vector of 111 features.

Finally, we use the acoustic model outputs to generate 5 addi-
tional pronunciation-based features. For this we used our best non-
native model, and two additional native-language acoustic models
(one trained on adult English speech from TED talks, and one trained
on adult German speech from the BAS corpus). The acoustic model
outputs include an alignment of the acoustic frames to phone states
and a likelihood of being in that phone state given the acoustic fea-
tures. We removed frames aligned to silence/background noise, and
then generated the following features: a) the length of the utterance
in number of acoustic frames, b) the number of silence frames in
the utterance output by our best ASR system, c) a confidence score
based on the sum of the likelihoods of each context independent
phone class, similar to the work by [31], but averaged over all states
in the utterance for that phone class and normalized over the unique
phones in the utterance, d) the edit distance between the phonetic
outputs from the native ASR system and the non-native ASR, sim-
ilar to [32], e) the difference between the confidence scores from
the native and non-native ASR system, similar to [33]. Therefore,
in total, when making use of all features, we represent the student’s
answer with a vector of dimensionality 116.

5. CLASSIFICATION RESULTS AND CONCLUSIONS

For measuring the performance, we consider three metrics: Cor-
rect Classification (CC), linear Weighted Kappa (WK), Correlation
(Corr) between the expert’s scores and the predicted ones. For all the
three metrics, the value of 1.0 corresponds to perfect classification;
completely wrong classification is 0.0 for CC and WK, −1.0 for
Corr. For each indicator, we used the training data to train a feedfor-
ward NN by grouping sentences sharing language, proficiency level
and session. Average classification results are reported in Table 6.

Table 6. Average classification results on 2018 data, spoken, re-
ported both on training and test data, given in terms of Correct Clas-
sification (CC), Weighted Kappa (WK), Correlation (Corr).

Dataset English German
CC WK Corr CC WK Corr

2018 train 0.712 0.840 0.684 0.763 0.866 0.763
2018 test 0.596 0.775 0.532 0.667 0.822 0.613

Looking at the results in Table 6, the performance in terms of
all reported metrics (CC, WK and Corr) is good, showing that
the automatically assigned scores are not far from the manual ones
assigned by human experts. The low difference between the per-
formance on training and corresponding test sets indicate that the
models do not overfit the data. More importantly, the values of the
achieved correlation coefficients resemble those reported in [13], re-
lated to human rater correlation, on a conversational task which is,
in terms of difficulty for L2 learners, similar to some of the tasks
analyzed in this paper.

Future work will address the usage of both features selection and
regression models for proficiency classification. Also the investiga-
tion of an extended set of features, partially inspired by the hybrid
set of features proposed in [28] for ASR quality estimation will be
carried out.
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