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ABSTRACT

Emotion recognition algorithms rely on data annotated with high
quality labels. However, emotion expression and perception are in-
herently subjective. There is generally not a single annotation that
can be unambiguously declared “correct.” As a result, annotations
are colored by the manner in which they were collected. In this paper,
we conduct crowdsourcing experiments to investigate this impact on
both the annotations themselves and on the performance of these al-
gorithms. We focus on one critical question: the effect of context.
We present a new emotion dataset, Multimodal Stressed Emotion
(MuSE), and annotate the dataset using two conditions: randomized,
in which annotators are presented with clips in random order, and
contextualized, in which annotators are presented with clips in order.
We find that contextual labeling schemes result in annotations that
are more similar to a speaker’s own self-reported labels and that la-
bels generated from randomized schemes are most easily predictable
by automated systems.

Index Terms— emotion, crowdsourcing, annotation, emotion
perception, classifier performance

1. INTRODUCTION
Emotion technologies, both recognition and synthesis, are heavily
dependent on having reliably annotated emotional data, annotations
that describe the observed emotional display. The hope is often that
these annotations capture the speaker’s true underlying state. Yet,
in practice, this true felt sense emotion is unknown, and researchers
must resort to manual labeling of data. The hope is that these man-
ual labels are sufficiently “correct” to enable the training and eval-
uation of emotion technologies. One method of ensuring quality la-
bels has been to require the participation of expert raters. However,
it can be both expensive and time consuming to hire expert raters.
More recently, researchers have embraced crowdsourcing services
(e.g., Amazon Mechanical Turk) to efficiently collect annotations
from non-expert workers in a cost-effective and timely manner [1].
Once collected, annotations from non-expert workers are aggregated
to form ground-truth labels that are used for training and evaluat-
ing automated systems. However, the method through which these
annotations are collected can profoundly impact the behavior of the
annotators. In this paper, we study how the setup of a crowdsourcing
task can influence both the collected emotion labels as well as the
performance of classifiers trained using these labels.

The effective use of crowdsourcing for collecting reliable emo-
tion labels has been an active research topic. Burmania et al. investi-
gated the trade-off between the number of annotators and underlying
reliability of the annotations [2]. Other work has looked at quality-
control techniques to improve the reliability of annotations. For ex-

ample, Soleymani et al. used qualification tests to filter out spammers
and retain high-quality annotators [1]. Burmania et al. investigated
the use of gold-standard samples to monitor annotators’ reliability
and fatigue [3].

However, variability also results from context, relevant past in-
formation that provides cues as to how to interpret an emotional dis-
play. Context, such as tone, words, expressions can affect how indi-
viduals perceive emotion [4]. Context is also implicitly included in
the labeling schemes of many of the most common emotion datasets
(e.g., IEMOCAP [5] and MSP-Improv [6]) because annotators rate
each utterance (or time period) in order. That means that annota-
tors are influenced by information that they recently observed [7].
However, emotion recognition systems are often trained over single
utterances [8–11], leading to a mismatch in the information available
to annotators and to classification systems.

In this work, we study the difference between annotations ob-
tained for audio clips when emotional displays are presented to an-
notators with context and when presented randomly. In both cases,
annotators are affected by the emotion displays that they have re-
cently observed [12, 13]. However, only in the contextual presen-
tation there is also a cohesive story. We investigate the following
research questions:

• Q1: Is there a significant difference between annotations obtained
from random and contextual presentations?

• Q2: Are annotations obtained from contextual presentations more
similar to a speaker’s own self-reported labels than those from
random presentations?

• Q3: Is there a significant difference between the inter-rater agree-
ments obtained from random and contextual presentations?

• Q4: How does the performance of an emotion recognition system,
operating on single utterances, vary given annotations obtained
from random and contextual presentations?

• Q5: How does the performance gain of an emotion recognition
system operating across multiple utterances vary given different
amounts of context (defined as number of prior utterances) and
labels obtained from random and contextual presentations?

This paper is organized as follows. First, we introduce the
dataset and explain the design, collection and post-processing pro-
cedures. Then, we present an analysis of the dataset and the col-
lected corpus labels. We then present the results of a state-of-the-art
speech-based emotion classification system trained on the random
presentation vs. the contextual presentation labels. The findings
from this work will provide insight into performance implications of
emotion recognition system given mismatches between the amount
of context provided to the annotators generating the labels and the
ultimate classification system.
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2. DATASET

2.1. Data Collection

We introduce the Multimodal Stressed Emotion (MuSE) dataset,
designed to understand how stress and emotion interplay in spo-
ken communication. The dataset consists of fifty-five recordings
from twenty-eight participants, each recorded under two condi-
tions, stressed and not-stressed (one subject participated in only the
stressed condition). The stress condition was recorded during the
final exam period at the University of Michigan, the not-stressed
condition was recorded after exams concluded. The emotion com-
ponent was generated through video stimuli, sampled from [14] and
[15] and through emotionally evocative monologue topics [16]. The
data used in this study are a subset of the corpus. Table 1 shows
the questions used to evoke emotions, which fall under following
sections: (a) icebreaker; (b) non-neutral (c) non-neutral; (d) non-
neutral; (e) ending. The non-neutral sections (b), (c) and (d) were
presented in random order using prompts from each of the cate-
gories: positive, negative, and intensity. In each case, one question
was used in the stress recording and the other was used in the non-
stress recording. Each participant was asked to rate his/her emotions
after the completion of each section using the scales of activation
(calm vs. excited) and valence (positive vs. negative). We refer to
these annotations as the self-report annotations.

2.2. Data Preprocessing
The monologues in each section are divided into utterances. How-
ever, since the monologues are spontaneous, often there is not a clear
sentence boundary. We create utterances by identifying prosodic or
linguistic boundaries in spontaneous speech as defined by [17]: (a)
a clear sentence boundary (full stop or exclamation); (b) a change
of context after filler words, or revision of sentence; (c) an extended
pause (i.e., a silence greater than three seconds); or (d) filler or ex-
ample words instead of a full stop.

The dataset contains 2,648 utterances with a mean duration of
12.44 ± 6.72 seconds (Table 2). The mean length of stressed utter-
ances (11.73 ± 5.77 seconds) is significantly different from that of
the non-stressed utterances (13.30± 6.73 seconds).

We perform data selection, excluding utterances that are shorter
than 3-seconds and longer than 35-seconds (2.8% of the original
data). This is because short segments may not have enough infor-
mation to capture emotion, and longer segments can have variable
emotion. This results in 2,574 utterances.

2.3. Crowdsourcing
We posted our experiments as Human Intelligence Tasks (HITs) on
Amazon Mechanical Turk. HITs were defined as sets of utterances
in either the contextual or random presentation condition. In each
condition, workers were presented with a single utterances and were
asked to annotate the activation and valence values of that utterance
using Self Assessment Manikins [18]. Once completed, the worker
was presented with a new HIT and could not go back to revise a
previous estimate of emotion. This annotation strategy is different
than the one deployed in [19],where the workers could go back and
re-evaluate utterances.

In the randomized experiment, each HIT is an utterance from
any section, by any speaker, from any session and all HITs appear
in random order. So, a worker might see the first HIT as Utterance
10 from Section 3 of Subject 4’s stressed recording and see the sec-
ond HIT as Utterance 1 from Section 5 of Subject 10’s non-stressed
recording. This setup ensured that the workers couldn’t condition to
any speaker’s specific style or contextual information.

Table 1. Emotion elicitation questions.

Icebreaker
1. Given the choice of anyone in the world, whom would you want

as a dinner guest?
2. Would you like to be famous? In what way?

Positive
1. For what in your life do you feel most grateful?
2. What is the greatest accomplishment of your life?

Negative
1. If you could change anything about the way you were raised,

what would it be?
2. Share an embarrassing moment in your life.

Intensity
1. If you were to die this evening with no opportunity to commu-

nicate with anyone, what would you most regret not having told
someone?

2. Your house, containing everything you own, catches fire. After
saving your loved ones and pets, you have time to safely make a
final dash to save any one item. What would it be? Why?

Ending
1. If you were able to live to the age of 90 and retain either the mind

or body of a 30-year old for the last 60 years of your life, which
would you choose?

2. If you could wake up tomorrow having gained one quality or abil-
ity, what would it be?

In the contextual experiment, we posted each HIT as a collec-
tion of ordered utterances from a section of a particular subject’s
recording. Because each section’s question was designed to elicit a
particular emotion, we still posted the HITs in a random order over
sections from all subjects. This prevented workers from condition-
ing to the speaking style of an individual participant. For example, a
worker might see the first HIT as Utterance 1...N from Section 3 of
Subject 4’s stressed recording and see the second HIT as Utterance
1...M from Section 5 of Subject 10’s non-stressed recording where N,
M are the number of utterances in those sections respectively.

We recruited from a population of workers in the United States
who are native English speakers, to reduce the impact of cultural
variability. We ensured that each worker had > 98% approval rating
and number of HITs approved as > 500. We ensured that all workers
understood the meaning of activation and valence using a qualifica-
tion task that asked workers to rank emotion content. The workers
were asked to select, given two clips, which clip had the higher va-
lence and which had the higher activation. The options were chosen
from a set including: (1) a speaker in low activation, high valence
state and (2) a speaker in high activation, low valence state.

We assigned each HIT to eight workers. All HIT workers were
paid a minimum wage ($9.25/hr), pro-rated to the minute. We re-
moved and re-posted assignments where the worker completed the
assignment in time shorter than the audio length. The ground-truth
for each utterance was formed by taking the average of the eight
annotations.

3. EXPERIMENTAL SETUP
Acoustic Features. We extract acoustic features using OpenS-
mile [20] with the eGeMAPS configuration [21]. The eGeMAPS
feature set consists of 88 utterance-level statistics over the low-level
descriptors of frequency, energy, spectral, and cepstral parameters.
We perform speaker-level z-normalization on all features.

Static Network Setup (Hypothesis 4). We train and evaluate
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Table 2. Data summary (R:random, C:context, F:female, M:male).

Monologue Subset

Mean num of utterances/monologue 9.69± 2.55
Mean duration of utterances 12.44± 6.72 seconds
Total num of utterances 2,648
Selected num of utterances 2,574
Gender distribution 19 (M) and 9 (F)
Total annotated speech duration ∼ 10 hours

Crowdsourced Data

Num of workers 160 (R) and 72 (C)
Blocked Workers 8

Mean activation 3.62±0.91 (R)
3.69±0.81 (C)

Mean valence 5.26±0.95 (R)
5.37±1.00 (C)

four Deep Neural Networks (DNN) models: {random, contextual}×
{valence, activation}. In all cases, we predict the continuous annota-
tion using regression. For each network setup, we follow a five-fold
evaluation scheme and report the average RMSE across the folds.
For each test-fold, we use the previous fold for hyper-parameter se-
lection and early stopping. The hyper-parameters include: number of
layers {2, 3, 4} and layer width {64, 128, 256}. We use ReLU acti-
vation and train the networks with MSE loss using Adam optimizer.

Dynamic Network Setup (Hypothesis 5). We use Gated Re-
current Unit networks (GRU). The hyper-parameters are: number of
layers {1, 2} and layer width {64, 128, 256}. We pass the GRU out-
put of the last time step through a regression layer to get the final
outputs. We train the networks with MSE loss using Adam optimizer.

Network Training. We train our networks for a maximum of
100 epochs and monitor the validation loss after each epoch. We stop
the training if the validation loss does not improve for 15 consecu-
tive epochs. We revert the network’s weights to those that achieved
the lowest validation loss during training. Finally we train each net-
work five times and average the predictions to reduce variance due
to random initialization.

4. RESULTS AND ANALYSIS
4.1. Question 1
Hypothesis: Human annotations collected through randomized la-
beling are significantly different from those collected through con-
textualized labeling. Prior work has shown context effects emotion
perception [7], even when observers are explicitly asked not to take
it under consideration [22, 23]. Hence, we believe that context pro-
vided by previous utterances would lead to a change in perception
of a particular utterance. Tables 3 and 4 (sets of significantly differ-
ent means are bolded (t-test, p < 0.01)) show the mean activation
and valence, for the random and contextualized labeling schemes,
grouped by condition and question, respectively. Table 3 shows that,
for non-stress conditions, the mean of the activation ratings obtained
through contextual labeling is significantly higher than that obtained
through random labeling. The table also shows that, for both stress
and non-stress conditions, the valence means obtained through con-
textual labeling are significantly higher than those obtained through
random labeling. Table 4 shows that, although the mean valence
and activation values were consistently different for the labelling
schemes across all emotion elicitation techniques, the differences
were significant in some elicitation techniques and not in others.

4.2. Question 2
Hypothesis: Annotations of outside observers are more similar to
self-annotations in the contextual case, compared to the random-

Table 3. Mean activation and valence values obtained from the two
crowdsourcing labeling schemes (random and context) grouped by
speaker condition (stress and non-stress).

Activation Valence

Random Context Random Context

Stress 3.63 3.59 5.27 5.36
Non-Stress 3.61 3.79 5.26 5.39

Table 4. Mean activation and valence values obtained from the two
crowdsourcing labeling schemes (random and context) grouped by
emotion elicitation question.

Activation Valence

Random Context Random Context

Icebreaker 3.55 3.60 5.41 5.61
Positive 3.64 3.71 5.11 5.13
Negative 3.57 3.67 5.40 5.55
Intensity 3.64 3.74 5.17 5.31
Ending 3.69 3.71 5.23 5.29

ized case. Path models [24] suggest that subjective voice variation,
from the established mental baseline accounts for much of the vari-
ance in emotion inference. Hence, emotion inference is aided with
more cues about the speech patterns that are more readily provided
through context. Figure 1 shows the absolute differences between
the mean crowdsourced labels (valence and activation, each for ran-
dom and contextual schemes) and self-reported scores as a function
of utterance position. The figure shows that contextual labels have
consistently lower absolute differences, compared to self-reported
labels, than the random labels. A paired t-test shows that these dif-
ferences between the contextual and random labels are significant
(p < 0.01) for both valence and activation.

Our results suggest that crowdsourced emotion labels collected
with access to contextual information are closer to self-reported
emotion labels. Our results further suggest that these differences
are consistent across recording conditions (Table 5) and emotion
elicitation questions ( Table 6, sets of significantly different means
are bolded, t-test, p < 0.01).

4.3. Question 3
Hypothesis: Individual annotators differ in annotation similarity in
the contextual presentations, compared to the randomized presenta-
tion. Joseph et al. in [25] show that while insufficient context results
in noisy and uncertain annotations, an overabundance of context may
cause the context to outweigh other signals and lead to lower agree-
ment. Further, contextual information biases different people differ-
ently on both temporal and intensity metrics [26, 27]. Our results
highlight the impact of context: the agreement is significantly higher
in the case of labels obtained from the randomized presentations,
compared to the contextualized presentations: (1.55 vs. 1.62) for ac-
tivation and (1.07 vs. 1.14) for valence. This trend holds true for
all experimental design setups i.e. {random, contextual}× {valence,
activation} and {random, contextual}× {icebreaker, positive, neg-
ative, intensity and ending}. As shown in Tables 3 and 4, the la-
bels obtained in both cases are significantly different due to context-
based conditioning. However, the conditioning may not impact the
labels consistently across all workers, which may lead to lower inter-
annotator agreement values. This suggests that it may be beneficial to
consider the distribution of annotations as ground-truth, rather than
averaging labels, which presumes that the impact of conditioning is
consistent across all workers [28].
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Table 5. Mean difference between the self-reported activation and
valence ratings from the two labeling schemes (random and context)
grouped by speaker condition (stress and non-stress).

Activation Valence

Random Context Random Context

Stress 2.03 1.96 1.20 1.14
Non-Stress 1.82 1.67 1.20 1.12

Table 6. Mean difference between the self-reported activation and
valence ratings from the two labeling schemes (random and context)
grouped by emotion elicitation question.

Activation Valence

Random Context Random Context

Icebreaker 1.81 1.80 0.97 0.85
Positive 1.89 1.74 1.14 1.11
Negative 1.96 1.76 1.18 1.07
Intensity 2.19 2.08 1.49 1.44
Ending 1.81 1.73 1.23 1.28

4.4. Question 4
Hypothesis: A static classifier will perform better when trained and
evaluated using labels annotated with a randomized presentation,
compared to a contextualized presentation. Prior studies have shown
that it is easier to classify data with less target variation [29] and
matched classifier input, which in our case is labels obtained from
the random labelling presentation (the classifier processes single ut-
terances at a time, no context).

We test this hypothesis by training and evaluating classifiers
for the four possible setups: {random, contextual} x {valence,
activation}. The classifier is described in Section 3. We find that
the RMSEs are lower for the contextual labels in the case of activa-
tion (0.91 vs. 1.00) while the errors are lower for the random labels
in the case of valence (1.13 vs. 1.20). Using a paired t-test, we find
that the differences in errors are significant in the case of valence
but not activation. These findings suggest that classification perfor-
mance is impacted by the labelling methodology, but that this effect
may depend on emotion dimension.

Prior work has demonstrated the importance of considering
long-term context when predicting valence (the same effect has not
been shown in activation) [30]. The contextual annotations provided
the annotators with this information, but the classifier could not take
advantage of this effect. This mismatch may have contributed to the
relatively lowered performance of the valence classifier, compared
to the activation classifier.

4.5. Question 5
Hypothesis: We anticipate that systems trained on contextualized la-
bels will see greater increases in performance as the amount of pro-
vided context increases. This finding would support results in the
literature regarding the ordinal nature of emotion perception [7] and
previous works in emotion recognition that have demonstrated that
context can influence the performance of emotion classifiers [30].

The classifier is described in Section 3. We test this hypothesis
by using the contextual annotations in one classifier and the non-
contextual (random) annotations for the other classifier. We select a
subset of utterances in each section that have at least five consec-
utive utterances before them (59% of the original data). The initial
classifier is trained without temporal context (but with the contextu-
alized labels). We incrementally increase the number of past utter-
ances (from zero to five). We run this for every task combination and
report the results in Table 7.

Fig. 1. Mean difference between the self-reported activation and va-
lence ratings and the random and contextual presentations.
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Table 7. Relative improvement in RMSE (%) obtained for each addi-
tional previous utterance, comparing random and contextual labels.

Activation Valence

Past steps Random Context Random Context

0 - - - -
1 +1.96% +1.24% +0.85% +3.32%
2 +2.28% +2.93% +5.23% +7.63%
3 +3.36% +8.72% +6.08% +8.43%
4 +4.41% +10.5% +8.23% +8.36%

Table 7 shows the performance gains after incrementally adding
the past utterance, relative to the baseline performance. The addition
of past utterances improves the performance over baseline for all se-
tups. Where using contextual labels, however, the performance gains
are generally higher than the gains obtained after using random la-
bels. Our results suggest that it is necessary to consider the mismatch
the amount of context provided to the annotators generating the la-
bels and the ultimate classification system.

5. CONCLUSION

In this work we showed that the amount of context provided to an-
notators when assigning emotion labels affects both the annotations
themselves and the performance of classifiers using these annota-
tions. We also studied the implications of a mismatch between an-
notation context and classifier context on classifier performance. For
future work, we will analyze the effect of context given multimodal
information and the differences in perception of emotion expression
in stress vs. non-stressed situations.
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