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ABSTRACT

Conventional models for emotion recognition from speech
signal are trained in supervised fashion using speech utter-
ances with emotion labels. In this study we hypothesize that
speech signal depends on multiple latent variables including
the emotional state, age, gender, and speech content. We
propose an Adversarial Autoencoder (AAE) to perform vari-
ational inference over the latent variables and reconstruct the
input feature representations. Reconstruction of feature rep-
resentations is used as an auxiliary task to aid the primary
emotion recognition task. Experiments on the IEMOCAP
dataset demonstrate that the auxiliary learning tasks improve
emotion classification accuracy compared to a baseline su-
pervised classifier. Further, we demonstrate that the proposed
learning approach can be used for the end-to-end speech emo-
tion recognition, as its applicable for models that operate on
frame-level inputs.

Index Terms— Emotion recognition, Autoencoder, Ad-
versarial training

1. INTRODUCTION

Affect sensing plays an important role in many health-care,
education, and security related scenarios. Therefore, emotion
recognition should be an integral part of modern human com-
puter interaction systems. While the emotion recognition sys-
tems can use multi modal inputs (e.g, neoro-physiological, vi-
sual, speech) speech remains a primary input due to its preva-
lence [1]. Typically, the speech emotion recognition is per-
formed in a supervised fashion using short, carefully seg-
mented utterances, with labels that can take two formats - dis-
crete categories such as happiness, sadness, anger and neutral
[2], or continuous attributes such as activation (calm versus
aroused), valence (negative versus positive) and dominance
(weak versus strong) [3]. Prediction of emotional attributes
has recently garnered more attention due to its flexibility in
describing more complex emotional states [4]. For exam-
ple, attributes can be used to distinguish various levels within
an emotional category such as cold anger versus hot anger.
In this study we focus on recognition of emotional attributes
from speech.

The performance of a conventional speech emotion recog-
nition system depends on the quantity and quality of labels
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used for supervision. The perception of speech emotion is a
complex process due to various biases which makes the an-
notation task difficult [5]. Due to the task complexity and
cost, annotation is usually done by few trained annotators.
Most emotion recognition related public datasets contain a
few thousand label utterances with 3-5 annotations per utter-
ance. Lack of labeled data is a bottleneck for training more
promissing deep learning models [6]. The recent advance-
ments in generative modeling have enabled generative tasks
to be used alongside discriminative classifiers [7]. There are
two benefits to this. First, the generative task, such as the
speech reconstruction, can be used as an auxiliary task to aid
the primary classification task [8]. Second, such frameworks
can be extended to semi-supervised scenarios.

In this paper we hypothesize that speech signal is pro-
duced via interaction of various latent factors including age,
gender, emotional state, and content of speech. We pose the
recognition of speech emotion as a latent variable inference
problem and solve it using a variational inference procedure.
Using Adversarial Autoencoder (AAE) [9], we perform a
variational approximation of the true posterior distribution
of the latent variables. The latent variables are split into a
discrete component corresponding to the speaker’s emotional
state, and a continuous component capturing other latent fac-
tors. The AAE is trained to disentangle the discrete emotion
distribution from the continuous component distribution. The
input speech representation is then reconstructed from the ap-
proximated latent distributions. Besides the primary emotion
classification task, the variational inference of latent vari-
ables and reconstruction of the input signal representations
are used as unsupervised auxiliary tasks. Our experimental
evaluations demonstrate that the proposed learning approach
performs better than the typical fully supervised training.
Further, we demonstrate that the proposed architecture is
applicable both to a) Sentence-level input representations ob-
tained by heuristic per-dimension aggregation of frame-level
features, and b) Raw frame-level feature inputs. The latter im-
plies applicability of the proposed framework to end-to-end
recognition of emotion in speech.

The main contributions of this paper are: a) A novel
framework for speech emotion recognition that employs vari-
ational inference of latent variables and reconstruction of the
speech signal, and b) Demonstration that the proposed frame-

ICASSP 2019



work is applicable to end-to-end speech emotion recognition.

2. RELATED WORK

Few recent studies used a variational approximation for emo-
tion recognition. Sahu et al. [10] considered an adversarial
autoencoder to extract features for emotion recognition. They
matched the encoded distribution of the autoencoder to a 4
component GMM corresponding to 4 emotional categories.
The encoded representation was used as a syntethic feature
representation along with the original features. Eskimez et al.
[11] similarly extracted features comparing the performance
of various autoencoders. These studies propose a two-step
process: 1) Learning general representations for speech re-
construction, and 2) training emotion recognizers on the ob-
tained representations. We propose a one-step approach treat-
ing the emotion state as a part of latent representation used
for reconstruction of speech signal.

Convolutional neural networks have recently gained pop-
ularity for emotion recognition tasks. Trigeorgis et al. [12]
proposed a CNN architecture to replicate mel-frequency cep-
strum coefficients MFCCs from raw speech waveform inputs.
Most recent works have considered spectrogram features as
inputs to the CNNs. Cummins et al. [13] built CNNss treating
spectrograms as images. Yang and Hirschberg [14] predicted
arousal and valence from spectrogram features. Few other
studies have considered mel filter bank energies (MFBE) as
inputs to CNN models. Aldeneh and Provost [15] used CNNs
on 40 MFBE:s as inputs to capture regional information emo-
tion recognition and compared it with utterance level statis-
tics. In this study we demonstrate that AAE modeling is ap-
plicable to CNN architectures that operate on frame-level fea-
ture (MFBE) inputs.

3. RESOURCES

3.1. Data

We test the proposed learning approach on the IEMOCAP
corpus [16] that consists of dyadic interactions between 5
distinct pairs of actors who improvise a scripted conversa-
tion. The corpus contains 10,039 utterances from 10 speak-
ers/actors. All utterances are annotated for activation, valence
and dominance emotional attributes by 2 or 3 raters on a 5-
likert scale. Similar to previous studies, we divide attribute
dimensions into 3 classes with {1,2}, {3}, and {4, 5} repre-
senting low, neutral and high class respectively.

3.2. Features

We employ feature set used in the Interspeech 2013 paralin-
guistic challenge (IS2013_ComParE) [17]. For the experi-
ments with frame-level inputs we use 65 low-level descriptors
(LLD) extracted over 20 ms frames. A number of high level
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statistics are then computed on the LLDs and their deltas, over
the entire utterance, resulting in 6,373 high-level functionals
(HLF) which we used in experiments with utterance-level in-
puts.

4. METHODOLOGY
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Fig. 1. Figure illustrates our hypothesis for speech production
from latent variables and the inference of the latent variable
as a posterior distribution on the observed variable

Latent speech production factors include speaker’s char-
acteristics (age, gender, accent, and speaker traits), speaker’s
emotional state, and content of speech.The emotion detection
problem involves the inference of these latent variables. Fig-
ure 1 illustrates the overall framework. Given the observed
variable x corresponding to the speech signal and the hidden
variables z, then the inference of z given x is is based on
the distribution pg(z | =) where 6§ models the data. The true
posterior distribution py(z | x) is computationally intractable
and is approximated by the variational model ¢4(z | z). The
goal is to optimize ¢ such that g4(z | ) =~ pg(z | x). The
optimization can be conducted by minimizing the KL diver-
gence between ¢, (z | z) and pg(z | ). This leads to the
formulation of the variational lower bound (Equation 1).

KL(gs(z | 2)llpo (= | 2)) =
log pg () — Eq, (2w [log pa (2 | 2)] + K L(qe(2 | ©)[lpe(2))
1y

~

where pg(z) is a prior distribution over the latent variable z.
Minimization of the divergence between the true and the ap-
proximate posterior also decreases the difference between the
marginal log-likelihood log pg(x) and the variational lower
bound E, (. 1z)[logpe(z | 2)] — KL(qs(z | 2)|[pe(z)). The
optimization process resembles an autoencoder (¢ parame-
terizes the encoder and 6 parameterizes the decoder) training
where the objective is to maximize likelihood of generated
data given the observed data x.

max By, ) gy 210y log po (@ | 2)] = K L{gs(2 | 2)[lpo(2))
2



The second term in Equation 2 acts as a regularizer that forces
the approximate posterior to match a prior distribution. Given
enough capacity the encoder ¢ is able to produce a distribu-
tion that matches the true posterior and the decoder is able to
generate data likely to be seen in the dataset.

4.1. Adversarial Autoencoder
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Fig. 2. Figure illustrates the proposed AAE model

We employ AAE to optimize Equation 2. The first term
in the equation represents the reconstruction loss of the au-
toencoder. The second term is optimized through adversar-
ial training. The adversary learns to discriminate between
"true’ samples sampled from py(z) and ’fake’ samples sam-
pled from an aggregated posterior g4(z). This adversarial
training has shown to produce a posterior distribution that
better matches the prior distribution [9]. Moreover, with ad-
versarial training we only need to sample from the two com-
peting distributions, whereas directly minimizing the K L di-
vergence requires a prior knowledge of the functional form
for the loss. This allows AAE the flexibility of choosing any
distribution for the prior py(z). Figure 2 illustrates the AAE
architecture used in this study. The encoder maps the speech
signal z to the latent space which is divided into two compo-
nents - a discrete component y that captures the emotion vari-
ability in speech and a continuous component 2 that captures
all the other speech variabilities. The posterior distribution
is denoted g4(y, z | x). These aggregated posteriors g, (y),
g¢(z) are matched to a categorical and a Gaussian prior. Note
that the categorical posterior g4(y | ) also represents the
emotion classifier. The decoder py(z | y, z) then maps the
joint latent space back to the data distribution. The training
of the autoencoder is done in 3 phases. First, in the recon-
struction phase, the autoencoder is trained from top to bot-
tom by minimizing a reconstruction loss between the recon-
structed signal  and the true signal . The second phase is
a regularization phase where both posterior distributions are
matched to their respective priors by training adversarial net-
works. In the third phase, the categorical encoder g4(y | )
is trained using a cross entropy loss between the predicted la-

bels ¢ and the true emotion labels. This framework can be
used in a semi-supervised setting when limited labeled data
is available. The reconstruction and regularization phases are
learned without the emotion labels and therefore are unsuper-
vised with respect to the primary task.

5. EXPERIMENTAL EVALUATION

5.1. Baseline

We first implement a completely supervised architecture as
a baseline for the proposed AAE model. The baseline ar-
chitecture is a 2-layer fully connected neural network with
256 nodes in each layer. A ReLU activation was used at the
hidden layer and a softmax activation was used at the output
layer for classification. To regularize the model a dropout of
0.5 was used between the hidden layers. The model was op-
timized with a Nadam optimizer and a learning rate of le-4.
The model was trained for 100 epochs

We evaluate our models using speaker independent tests.
The IEMOCAP dataset is divided into 10 speaker indepen-
dent folds. For each test, data belonging to 8 speakers from
4 sessions of the dataset are used to train the models. Data
from Speakers in the remaining session are used to mutually
validate and test the models i.e one speaker’s data is used to
validate the model and the other is used to test the model and
vice versa. We evaluate the models based on the unweighted
accuracy over the 3 emotion classes. We train the models for
100 epochs and use the model parameters that perform best
on the validation set for the test set evaluation. While we do
this for each fold independently, we report the unweighted
accuracy over the entire dataset by accumulating the predic-
tions over all folds. Experiments are run 10 times with differ-
ent initializations, to avoid the effect of random seeds in our
evaluation. The first row in Table 1 reports the baseline ac-
curacy comparable to previous related studies (Section 2). As
shown in previous studies, recognizing valence from acoustic
features remains harder task then recognizing activation and
dominance.

5.2. Proposed AAE architecture

We select parameters of the AAE based on the validation set
performance. We use a 2 layer neural network with 256 nodes
per layer to parameterize the encoder and the decoder. The
ReL.U function is used as activation function and 0.5 dropout
is used between the encoder’s hidden layers. Note that the en-
coder complexity (i.e., number of parameters) is comparable
to the baseline architecture. The latent space is divided into
two components, y representing the categorical emotion dis-
tribution and z the continuous style distribution. The dimen-
sion of y, constrained by the emotion class number, equals
3. The dimension of z was fixed at 100. For the prior dis-
tributions to match the latent space, we used a categorical
distribution with equal probabilities of choosing each class
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for py(y) and for the continuous prior py(z), we use standard
Gaussian distribution, i.e. pg(z) ~ N(0, I). Both discrimina-
tors for adversarial training consist of two 256-node layers. A
sigmoid activation is used at the discrimnators’ outputs. The
emotion classifier ¢, (y) is trained using the cross entropy cost
function. The model was trained for 100 epochs. The best pa-
rameters on the validation set were used to for testing. The
performance of the vanilla AAE is shown in the second row
of the Table 1.

The vanilla AAE performs worse than the utterance level
baseline. We identified several factors that were important for
success of the AAE training:

e Batch Normalization: We normalized all layers includ-
ing the softmax and linear layer at the output of the
encoder and the linear layer at the end of the decoder.

e Discriminator regularization: A dropout of 0.5 in the
discriminator layers improved results.

e “Strengthened” generator: The discriminators of the
adversarial components were trained with 0.1*genera-
tor learning rate.

We conducted additional experiments to evaluate impact
of the different auxiliary tasks. We observed that the extra
regularization phase, where the latent space is matched to the
prior distribution, was important in improving performance
compared to using only the auxiliary reconstruction loss. The
third row in Table 1 contains performance of the optimized
AAE models. We confirmed significance of the performance
improvement for all emotion dimensions using a one-tailed
t-test with a p-value 0.05.

5.3. Emotion recognition with frame-level features

The experiments described in the previous session rely on
hand engineered utterance level representations. There has
been a push in the scientific community to move towards a
data driven representation learning. Some of the recent works
on speech emotion recognition focused on learning represen-
tations from log mel frequency band energies, spectrograms
or even the audio waveforms (Section 2).

In this section we address speech emotion recognition us-
ing the frame-level features as modeling input. Starting with
the 65 frame level LLDs from the Interspeech 2013 paralin-
guistic feature set (Section 3.2) as inputs, we build convolu-
tional neural networks (CNN) to learn feature representations
necessary for the discriminative task. This method is a step
towards end-to-end learning where we avoid the brute force
computation of multiple high level statistics over the utterance
and, instead, enable the model to learn necessary abstractions.
Similar to the experiments in Section 5.1 and Section 4.1 we
train both the baseline and the AAE models. For the base-
line model, we use multiple convolutional and max pooling
layers followed by dense layers and a softmax classifier. The
encoder of the AAE uses the same architecture. The decoder
employs dense transpose, convolutional transpose layers and

Type Act Val Dom
UTT + Base | 77.74 £ 0.35 | 61.92 +0.22 | 63.94 £ 0.48
UTT + AAE | 7530+ 0.53 | 60.94 +0.53 | 63.53 £ 0.36
UTT.+ AAE 78.08 £0.23 | 63.66 £ 0.42 | 65.32 +0.33

Optimized
FR +Base | 78.19 £0.50 | 62.14 £ 0.64 | 64.64 +0.72
FR + AAE | 7842+ 0.38 | 64.45+0.37 | 65.45£0.24

Table 1. Unweighted accuracy for utterance & frame models.
Act - Activation, Val - Valence and Dom - Dominance

Type Description
. ConvID {4, 128, Stride 1, Max Pool 4}x2
CNNBaseline | 1D {4, 256, Stride 1, Max Pool 4}x2
& ConvlD 4, 256
AAE encoder Dense {256 }x2
Softmax 3
Dense {256 }x2
AAE Decoder Conv1D Trans 4, 256
Conv1D Trans {4, 256, Stride 1, Unpool 4}x2
Conv1D Trans {4, 128, Stride 1, Unpool 4}x2

Table 2. Convolutional architectures

unpooling layers. The architecture specifications are summa-
rized in Table 2.

Rows 4 and 5 of Table 1 show the results for the baseline
and proposed architectures with frame level feature inputs.
We see that the performance with utterance level features can
be replicated using frame-level features. Further, the AAE
with frame-level features outperforms the frame level baseline
achieving the best performance amongst all trained models.

6. CONCLUSION

In this paper we examined hypothesis that speech is produced
by multiple latent factors, including emotional state of the
person. The latent variables were separated into emotional
component and a style component corresponding to all other
factors. The emotion recognition was performed through the
variational inference paradigm. We used the adversarial au-
toencoder to approximate the posterior distribution of the la-
tent variables. The latent variables were matched to prior dis-
tributions using an adversarial network. We demonstrated that
the proposed approach is applicable to fully-connected net-
work models operation on utterance-level features and con-
volutional neural network models operating on frame-level
features. For both model types the proposed learning ap-
proach outperformed fully supervised training. Our future
work will include experimentation on larger partially anno-
tated datasets.

7. REFERENCES

[1] Bjorn W Schuller, “Speech emotion recognition: two
decades in a nutshell, benchmarks, and ongoing trends,”

7413



(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

Communications of the ACM, vol. 61, no. 5, pp. 90-99,
2018.

B. Schuller, D. Seppi, A. Batliner, A. Maier, and
S. Steidl, “Towards more reality in the recognition
of emotional speech,” in International Conference
on Acoustics, Speech, and Signal Processing (ICASSP
2007), Honolulu, HI, USA, April 2007, vol. 4, pp. 941-
944.

M. Grimm, K. Kroschel, E. Mower, and S. Narayanan,
“Primitives-based evaluation and estimation of emotions
in speech,” Speech Communication, vol. 49, no. 10-11,
pp- 787-800, October-November 2007.

S. Parthasarathy and C. Busso, “Jointly predicting
arousal, valence and dominance with multi-task learn-
ing,” in Interspeech 2017, Stockholm, Sweden, August
2017, pp. 1103-1107.

A. Metallinou and S.S. Narayanan, “Annotation and
processing of continuous emotional attributes: Chal-
lenges and opportunities,” in 2nd International Work-
shop on Emotion Representation, Analysis and Synthe-
sis in Continuous Time and Space (EmoSPACE 2013),
Shanghai, China, April 2013.

M. Abdelwahab and C. Busso, “Study of dense network
approaches for speech emotion recognition,” in IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP 2018), Calgary, AB, Canada,
April 2018, pp. 5084-5088.

Jost Tobias Springenberg, “Unsupervised and semi-
supervised learning with categorical generative adver-
sarial networks,” arXiv preprint arXiv:1511.06390,
2015.

S. Parthasarathy and C. Busso, “Ladder networks
for emotion recognition: Using unsupervised auxiliary
tasks to improve predictions of emotional attributes,”
ArXiv e-prints, pp. 1-5, April 2018.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian
Goodfellow, and Brendan Frey, “Adversarial autoen-
coders,” arXiv preprint arXiv:1511.05644, 2015.

Saurabh Sahu, Rahul Gupta, Ganesh Sivaraman, Wael
AbdAlmageed, and Carol Espy-Wilson, ‘“Adversarial
auto-encoders for speech based emotion recognition,”
arXiv preprint arXiv:1806.02146, 2018.

Sefik Emre Eskimez, Zhiyao Duan, and Wendi Heinzel-
man, “Unsupervised learning approach to feature
analysis for automatic speech emotion recognition,”
in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 1IEEE, 2018,
pp- 5099-5103.

7414

[12]

[13]

[14]

[15]

[16]

[17]

G. Trigeorgis, F. Ringeval, R. Brueckner, E. Marchi,
M. Nicolaou, B. Schuller, and S. Zafeiriou, “Adieu fea-
tures? end-to-end speech emotion recognition using a
deep convolutional recurrent network,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP 2016), Shanghai, China, March 2016,
pp- 5200-5204.

Nicholas Cummins, Shahin Amiriparian, Gerhard
Hagerer, Anton Batliner, Stefan Steidl, and Bjorn W
Schuller, “An image-based deep spectrum feature rep-
resentation for the recognition of emotional speech,” in
Proceedings of the 2017 ACM on Multimedia Confer-
ence. ACM, 2017, pp. 478-484.

Zixiaofan Yang and Julia Hirschberg, “Predicting
arousal and valence from waveforms and spectrograms
using deep neural networks,” Proc. Interspeech 2018,
pp- 3092-3096, 2018.

Z. Aldeneh and E. Mower Provost, “Using regional
saliency for speech emotion recognition,” in IEEE In-
ternational Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP 2017), New Orleans, LA, USA,
March 2017, pp. 2741-2745.

C. Busso, M. Bulut, C.C. Lee, A. Kazemzadeh,
E. Mower, S. Kim, J.N. Chang, S. Lee, and S.S.
Narayanan, “IEMOCAP: Interactive emotional dyadic
motion capture database,” Journal of Language Re-
sources and Evaluation, vol. 42, no. 4, pp. 335-359,
December 2008.

B. Schuller, S. Steidl, A. Batliner, A. Vinciarelli,
K. Scherer, F. Ringeval, M. Chetouani, F. Weninger,
F. Eyben, E. Marchi, M. Mortillaro, H. Salamin,
A. Polychroniou, F. Valente, and S. Kim, “The INTER-
SPEECH 2013 computational paralinguistics challenge:
Social signals, conflict, emotion, autism,” in Interspeech
2013, Lyon, France, August 2013, pp. 148-152.



		2019-03-18T10:54:40-0500
	Preflight Ticket Signature




