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ABSTRACT

Advancement in speech emotion recognition technology has
brought tremendous potential in designing human-centered
applications across a wide range of scenarios. However,
due to the difficulty in obtaining large-scale labeled emotion
corpus for every application domains, most of the existing
databases are collected within disparate and limited contexts.
This contextualization often undermines the variability in the
emotional acoustic manifestation due to the limitation in the
amount of labeled data that can be collected for each partic-
ular context. This, hence, creates a robustness issue across
emotional scenarios. In this work, we propose to learn an en-
hanced acoustic code vector for in-context emotion database
through adversarially learning from large out-of-context emo-
tion corpus to obtain robust emotion recognition. We demon-
strate that our framework can obtain improved recognition
accuracy using low dimensional representations on two dif-
ferent databases, and it maintains its modeling power even
when given very limited in-context training samples.

Index Terms— behavioral signal processing (BSP), ad-
versarial network, emotion recognition, cross corpus learning

1. INTRODUCTION

Affective computing has taken major steps in the past decade
with algorithmic advancements finding its way to integrate
with modern commercial applications, e.g., natural human-
computer interface [1], health care [2], and marketing. While
many research has focused on studying different non-verbal
modalities, e.g., facial landmarks, action units, and physio-
logical signals [3], speech continues to be the most infor-
mation rich and accessible message exchange medium for
human. A number of survey papers has indicated several
key acoustic cues would carry important emotion informa-
tion [4, 5, 6, 7], but the variability of emotion modulation in
these cues remain highly variant. Given that the major vari-
ability in emotional acoustic manifestation is in the context,
e.g., recording conditions [8], interaction types [9], applica-
tion domains [10], etc, most of the real life emotion applica-
tions and/or corpus collected are often highly contextualized.

These contextualization processes in applications result
in disparate emotions corpus collected for each scenario that
can be limited in scale due to the expensive data collection
process. Obtaining robust speech emotion recognition across
domains is thus challenging. Several past works have re-
lied on the psychological theory of universal emotion percep-
tion [11, 12] in deriving transferable algorithms between cor-
pora, e.g., Bezooijen et al. ultilized three different languages
(Dutch, Taiwanese, and Japanese) to identify Dutch vocal ex-
pressions of emotion [13] and Schuller et al. attempted to
construct an universal emotion recognizer for multiple lan-
guages simultaneously through representation normalization
[14]. Most of these works have not yet shown their signifi-
cant effectiveness likely due to the high heterogeneity exists
between corpora. The limited data size problem further makes
the true variability of emotion information not well captured,
which creates a robustness issue. Hence, instead of learning
to transfer, we have previously proposed to perform multi-
view integration by leveraging out-of-context emotion corpus
to improve robust recognition of in-context data [15, 16].

In this work, we propose a novel adversarial network ar-
chitecture to learn an emotion-enriched acoustic vector for
in-context emotion data (limited in scale) by leveraging out-
of-context (larger in scale) emotion corpora. The use of ad-
versarial loss has been shown to be a promising methodol-
ogy for learning the underlying generative model. Few works
have utilized adversarial network to perform emotion recog-
nition showing that valence dimension could be further im-
proved [17]. Most consider adversarial learning essentially as
data augmentation method for the in-context database only.
Our proposed network instead generates the enriched acous-
tic vector learning through out-of-context emotion from larger
emotion corpus using adversarial mechanism.

We evaluate our framework on two in-context databases,
i.e., the USC CreativeIT database [18] and the VAM database
[19], by leveraging out-of-context databases, i.e., the USC
IEMOCAP [20] and the NNIME [21]. Our experiments
show that our proposed adversarially-enriched vector can
obtain improved emotion recognition accuracy with low di-
mensional representation in both databases. Importantly, our
analysis demonstrates that our framework retains its robust-
ness even when trained with much reduced in-context data.
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Fig. 1. Figure shows our proposed framework we proposed. An emotion-enriched acoustic vector for in-context emotion data
is learned adversarially by leveraging out-of-context emotion corpora, then SVM is used to perform final classification.

2. RESEARCH METHODOLOGY
2.1. Emotion Databases
In this work, we utilize two different in-context (limited in
scale) databases as our main emotion recognition evaluation
corpus, and two out-of-context (much larger in scale) emo-
tion corpora to be used in the training of our adversarially-
enriched code vector. We will briefly describe each database.
2.1.1. In-Context Databases: CreativeIT and VAM
We use two different in-context emotion corpus, the USC
Creative IT database and the VERA AM MITTAG (VAM)
database. The USC CreativeIT database is a public available
emotion corpus designed within the context of an established
theatrical acting technique to carry out affective dyadic inter-
actions. This database includes a total of 16 actors (8 male,
8 female) forming 8 pairs to engage in 3 to 5 minutes long
improvisations. Each interaction is rated by 3 raters using
continuous-in-time annotation on attributes of valence, acti-
vation, and dominance (the scale ranges between 1 to -1).
There are a total of 2162 utterances in the database, we further
binarize the average values of rated valence and activation of
an utterance (class 1: [-1:0] and class 2: (0:1]). In summary,
a total of 2162 utterances each with a binary label indicat-
ing high versus low for activation and valence are used as our
target data for the USC CreativeIT.

The VAM corpus consists of recordings in the context of a
German talk show. Each show consists of several multi-party
(2 to 5 persons) dialogs, and 70% of speakers collected are
35 or younger at that time. The annotation includes attributes
of activation, valence, and dominance on the segmented sen-
tences. We also binarize the emotion annotations into high
versus low (class 1: [-1:0] and class 2: (0:1]). The VAM cor-
pus includes a total of 947 samples with each being labeled
with a binarized valence and activation score used as another
target in-context database in this work.
2.1.2. Out-of-Context Databases: NNIME and IEMOCAP
In this work, we use two different out-of-context emotion
corpus, the NNIME and the USC IEMOCAP database. The

NNIME is a new multimodal Mandarin Chinese affective in-
teraction corpus. The NNIME database contains recordings
of 44 subjects engaged in spontaneous dyadic spoken inter-
actions with each lasts approximately 3-minute long. The
database is annotated by 4 naive annotators on attributes of
valence and activation. There are a total of 6509 utterances
segmented in the database. We average the 4 naive annota-
tor’s rating and binarize it into high versus low (binary class:
[-1,0] and (0,1]) as the labels used in this work

The USC IEMOCAP database is a well-known audio-
visual English emotional database. The database consists of
5 dyadic sessions with a total of 10 actors (5 males and 5
females) grouping in pairs to engage in dyadic face-to-face
interactions. There is approximately 12 hours of data seg-
mented into utterance (a total of 6905 sentences). We average
the rated activation and valence labels for each utterance over
raters and binarize the values into high versus low (binary
class: [1,3) and [3,5]) to be used in this work.

2.2. Adversarially-Enriched Acoustic Vector
Fig. 1 displays our framework in deriving adversarially-
enriched acoustic vector by leveraging out-of-context corpus.
We will describe acoustic features and adversarial learning
from out-of-context emotion corpus in the following.
2.2.1. Acoustic Features
We first extract 88 dimensional eGeMAPS acoustic features
using the OpenSmile toolbox for every utterance due to its
demonstrated robustness in characterizing acoustic emotion
information across databases [22]
2.2.2. Adversarial Representation Learning
We use adversarial auto-encoder (AAE) as our core repre-
sentation learning approach for utterances of our in-context
database. As depicted in Fig. 1, G : X → C is the encoder
portion to extract the representation, and F : C → X ′ is the
decoder part to project back to the original feature space. C
is the learned latent acoustic code vector. D is the discrim-
inator to discriminate C, latent vector. Instead of learning
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Table 1. Exp 1: Summary of our proposed adversarially-enriched acoustic vector for emotion classification
In-Context: Creative IT

baselinefs baselinefs AAE out-of-context: IEMOCAP out-of-context: NNIME
88 Dimension 88 Dimension 64 Dimension 64 Dimension 10 Dimension 64 Dimension 10 Dimension

Act. 62.9 (Ds=88) 64.6 (Ds=36) 64.1 (Ds=16) 65.7 (Ds=26) 66.1 (Ds=4) 66.0(D=45) 66.1 (Ds=8)
Val. 52.3 (Ds=88) 53.4(Ds=36) 52.7 (Ds=16) 55.3 (Ds=26) 54.3 (Ds=4) 55.7(Ds=45) 55.0 (Ds=1)

In-Context: VAM
baselinefs baselinefs AAE out-of-context: IEMOCAP out-of-context: NNIME

88 Dimension 88 Dimension 64 Dimension 64 Dimension 10 Dimension 64 Dimension 10 Dimension
Act. 72.8 (Ds=88) 76.9 (Ds=9) 74.7 (Ds=38) 75.5 (Ds=26) 75.2 (Ds=4) 76.1(Ds=45) 76.1 (Ds=7)
Val. 52.2 (Ds=88) 52.9(Ds=78) 56.6 (Ds=38) 63.0 (Ds=7) 58.4 (Ds=2) 60.9(Ds=7) 59.3 (Ds=1)

vanilla AAE, we add an additional condition to ensure the rep-
resentation can integrate the emotion labels of the in-context
database. The conditional constraint is added to the decoder,
F : (C, Y ) → X ′, where Y indicates the in-context emotion
label. The in-context emotional acoustic code vector can then
be learned using the following modified reconstruction loss:

Lrec(G,F ) = argmin
G,F

[‖X ′ −X‖]2

where X ′ = F (G(X), Y ) denoted as the reconstructed data.
The latent vector is further constrained using a Gaussian dis-
tribution, Z which p(z) = N(z|0, I) making the adversarial
loss to be in the following form:

Ladv(G,D,X,Z) = min
G

max
D

Ez∼pz
[log(D(z))]

+Ex∼pdata(x)[log(1−D(G(x)))]

2.2.3. Enriched Code Vector from Out-of-Context Data
In order to learn an enriched code vector from out-of-context,
we adopt a similar concept as our previous approach [15, 16],
i.e., by jointly learning the emotion label derived from out-
of-context data as additional auxiliary label for the in-context
sample. For every sample j of the in-context data Xi and
out-of-context data Xo, we first map them into a latent vector,
denoted as Ei and Eo, using conventional adversarial autoen-
coder [23].

For every j-th sample in Ei, denoted as Ej
i , we identify

K-nearest samples from the out-of-context dataset by com-
puting cosine similarity between Ej

i to all samples in Eo.
Each of k-th identified Eo has an associated label in the out-
of-context Y k

io dataset. With this information, we modify the
conditional AAE architecture to integrate this auxiliary out-
of-context emotional information for every j-th sample for
the in-context database as an additional loss:

Lper(Xi) = ‖M(G(x))− Y K
io ‖2

The objective function includes three different loss defined:
Ltotal(G,F,D,M) = Lrec + Lper + Ladv

2.3. Emotion Classifier
After learning the complete out-of-context enriched condi-
tional adversarial autoencoder structure, we take G : X → C
as the latent representation extractor to derive features to be
used in training a support vector machine (SVM) for final
emotion classification.

3. EXPERIMENTAL SETUP AND RESULTS

3.1. Experimental Setup
In this work, we conduct two different experiments:

• Exp1: Recognition experiments for the two in-context
databases.

• Exp2: Reduced in-context labeled samples for recogni-
tion experiment.

All evaluation is done via leave-one-speaker-out cross val-
idation, and the accuracy is measured in unweighted average
recall (UAR). Univariate feature selection is carried out based
on ANOVA-F test, the adversarial learning framework is done
in every fold of training set. The parameters of the adversarial
network are listed below: the learning rate, and the number of
epoch is set to be 0.0005, 100 ∼ 300 respectively. All the
models are 3-layer DNN architecture, activation function of
all the layer use are leaky relu.

In Exp1, we generate latent vectors of two different size
(64 dimensions and 10 dimensions). Result of each indi-
cates training a SVM after performing univariate feature se-
lection. They are compared with three different baselines.
baseline indicates training a SVM directly on the 88 dimen-
sional eGeMAPs, and baselinefs indicates training a SVM
after performing univariate feature selection, and AAE indi-
cates that the acoustic vector are first learned using AAE on
the in-context emotion data only and then trained with SVM.

In Exp2, our aim is to assess the robustness of our frame-
work where there is limited labeled in-context data. Specifi-
cally, we present accuracy obtained for our framework as we
reduce the number of in-context labeled data.

3.2. Experimental Results and Analysis
3.2.1. Exp 1: Recognition Experiments

Table 1 lists a summary of our emotion recognition results
experiments of in-context database for our proposed frame-
work. D indicates the number of latent dimension used. In
the Creative IT database, the best result are obtained by lever-
aging the NNIME as the out-of-context emotion database.
Our method achieves UAR of 66.1% and 55% for activation
and valence respectively, which is 3.2 % and 2.7% relative
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Table 2. Exp2: Summary of reduced sample recognition experiments
In-Context: Creative IT In-Context: VAM

baselinefs baselinefs
Sample# full(100%) 500 (25%) 200(10%) full(100%) 500(50%) 100(10%)

Act. 64.6 61.5 60.1 76.9 75.5 72.5
Val. 53.4 53.9 53.3 52.9 52.0 50.0

64 Dimension 10 Dimension 64 Dimension 10 Dimension
IEMOCAP full 500 200 full 500 200 full 500 100 full 500 100

Act. 65.7 66.5 64.7 66.1 66.2 65.8 75.5 75.6 72.5 75.2 75.9 73.8
Val. 55.3 61.1 56.0 54.3 57.5 55.0 63.0 62.6 57.8 58.4 60.8 57.5

NNIME full 500 200 full 500 200 full 500 100 full 500 100
Act. 66.0 66.7 64.8 66.1 66.2 64.0 76.1 76.6 73.7 76.1 76.3 73.7
Val. 55.7 60.6 57.1 55.0 58.0 55.3 60.9 63.7 58.0 59.3 60.3 57.8

improvement over the baseline model. Importantly, the re-
quired feature dimensions in this case are only 8 and 1 re-
spectively to obtain the best recognition improvement. This
result shows the ability of our proposed structure in compactly
represent emotionally-relevant information. Furthermore, for
VAM database, we observe comparable performance in the
activation dimension with as little as 7 dimensions. It is likely
due to the fact that baseline method already perform quite
well on the activation dimensions (76.9%). In the valence di-
mension, by using IEMOCAP as the out-of-context database,
we obtain an accuracy of 63.3%, which is 9.8% better over
the baseline model, with only 7 dimensions as well.

In general, our proposed acoustic vector contain more
emotionally-relevant representation power by leveraging out-
of-context databases, e.g., comparing between enriched vec-
tors and AAE or baseline methods. Furthermore, we con-
sistently observe that our adversarially learned code vector
only need very few dimensions (< 10) to obtain the best
discriminative power.

3.2.2. Exp 2: Reduced In-Context Labeled Samples
In Exp 2, we reduce the total number of available labeled data
samples in both learning the adversarially-enriched acoustic
code vector and the training of the SVM classifier to assess
the robustness of our framework. Our goal is to understand
whether it is possible that our method can retain high-level
emotion information in the acoustic vector even under severe
lack-of-data condition.

Table 2 lists a summary of our emotion recognition exper-
iments for the Exp 2. We test samples number in the range of
500, 200, and 100 (50% to 10%). From the Table, while all of
the methods suffer loss of accuracy as we decrease the num-
ber of available samples. Our method is more robust against
this severe training condition. For example, in the Creative
IT, an obvious significant drop in baseline activation accuracy
occurs when using 500 samples (from 64.6% to 60.1%); how-
ever our proposed method still maintain its activation recog-
nition rate at close to 66%. In the VAM corpus, this effect is
also evident. When reducing the sample number to 100 (about

10% of the original VAM corpus), the accuracy drops from
76.9% and 52.9% to 72.5% and 50% in activation and va-
lence, respectively. While our accuracy for activation trained
with 100 samples is also comparable at around 73%, the va-
lence, however, maintains its accuracy at close to 58%.

The results presented in Table 2 is quite encouraging.
Most of the contextualized emotion corpus usually starts
off as a small database in its scale, by adversarially learn
an enriched code vector by leveraging existing large-scale
out-of-context emotion corpus, it adds relevant emotion in-
formation to the acoustic representation that are not present
in the limited in-context database.

4. CONCLUSIONS AND FUTURE WORKS
In this paper, we propose a novel adversarial network archi-
tecture to learn an emotion-enriched acoustic vector for in-
context emotion data by leveraging out-of-context emotion
corpora. Our experiments demonstrate an improved recog-
nition accuracy in two in-context database by integrating two
different out-of-context emotion corpus. We observe that few
dimensions of representations is sufficient to train the emo-
tion recognizer. Additional experiments demonstrate that our
framework is robust to training scenarios where only limited
data is available. This work presents one of the first works
in using adversarial mechanism in improving the robustness
of emotion recognition by integrating information from larger
out-of-domain corpus.

There are several future directions. The first is to examine
the effect on the characteristics of out-of-context database to
understand whether the types of interactions, the language of
the database, and the size of the available samples would have
an impact on the in-context emotion recognition. Further,
the framework now requires emotion labels from the out-of-
context database, which limits the scale and the availability of
the database that could be utilized. We would further investi-
gate approach in deriving unsupervised weak emotion labels,
e.g., [24], to robustly integrate yet another diverse view of
emotion perception in enhancing emotionally-relevant acous-
tic representation.
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