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ABSTRACT

In this paper we present our findings on how representation
learning on large unlabeled speech corpora can be benefi-
cially utilized for speech emotion recognition (SER). Prior
work on representation learning for SER mostly focused on
the relatively small emotional speech datasets without making
use of additional unlabeled speech data. We show that inte-
grating representations learnt by an unsupervised autoencoder
into a CNN-based emotion classifier improves the recognition
accuracy. To gain insights about what those models learn,
we analyze visualizations of the different representations us-
ing t-distributed neighbor embeddings (t-SNE). We evaluate
our approach on IEMOCAP and MSP-IMPROV by means of
within- and cross-corpus testing.

Index Terms— representation learning, speech emotion
recognition, unsupervised learning, visualization, CNN

1. INTRODUCTION

Two major challenges in the field of speech emotion recog-
nition (SER) are data scarcity and finding an optimally dis-
criminative speech representation for the task, as Schuller de-
scribed it in [1]: ”As the quest for the optimal features has
dominated the field similarly as the ever-lacking large and
naturalistic databases [...]”. Regarding representation learn-
ing (RL), there exist different approaches, mostly using vari-
ants of autoencoders (AE) to learn suitable features from the
data in an unsupervised manner, as in [2, 3, 4, 5, 6]. In [5],
variational AEs are trained and the learnt representation is
then used as input to a long short-term memory (LSTM) net-
work for emotion recognition. A similar approach is pre-
sented in [2] which closely relates to our work. The authors
compared different kinds of AEs and input features. In con-
trast to the present work, these studies have not used any ad-
ditional unlabeled speech resources. Potential ways to incor-
porate additional data have been presented recently in [7, 8].
In [7], four different types of AEs were trained on Librispeech
data and the encoders were used to generate representations
for labeled emotional speech to feed into a convolutional neu-
ral network (CNN) for SER. While this study used only the
AE representations as input, Lakomkin et al. [8] also exper-

imented with a combination of emotion-specific and ASR-
specific representations in a progressive neural network.

In this work we explore one direction how unsupervised
representation learning on large unlabeled speech corpora can
be utilized to enhance the performance of an SER system. We
train a recurrent sequence-to-sequence AE on unlabeled data
and use it to generate representations for the labeled target
data. These representations are incorporated in the training
procedure of an attentive CNN as additional source of infor-
mation for emotion classification. We show that adding this
additional feature representation improves the accuracy over
the baseline system for within- and cross-corpus evaluation.
For 4-class emotion recognition on the IEMOCAP corpus,
we report state-of-the-art comparable results. In addition, we
present and analyze visualizations of the different representa-
tions (ACNN and AE) in order to gain a better understanding
of what is learned by the models.

2. METHODS

For the task of speech emotion recognition, we use an atten-
tive convolutional neural network (ACNN) with multi-view
learning, proposed in [9]. As input features, 26 logMel filter-
banks in the range 0 to 6.5kHz are extracted for 25ms long
frames with a 10ms shift. We use the openSMILE toolkit [10]
for feature extraction. The network consists of one convolu-
tional and one max-pooling layer, followed by an attention
layer, which computes weights αi over all feature maps for
each time step i. This is shown in Equation 1, where xi is a
vector of an input matrix x and f(x) = WTx, with W being
a trainable parameter. The output of the attention layer is a
weighted sum of the input sequence.

αi =
exp(f(xi))∑
j exp(f(xj))

(1)

For learning a compact latent representation from un-
labeled speech as additional information source we train a
time-recurrent sequence-to-sequence autoencoder on spectro-
grams. We utilize the auDeep toolkit [11, 12] for spectrogram
extraction, autoencoder training and for generating represen-
tations with the learnt model. For spectrogram extraction
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Fig. 1: Overview of the model architecture. The training pro-
cedure follows these consecutive steps: (1) autoencoder train-
ing on a large speech corpus, (2) generation of latent represen-
tations for the emotional speech samples, (3) ACNN training
with those representations as additional feature vector.

we take 80ms long frames with a window overlap of 40ms
and extract 128 Mel frequency bands. Figure 1 presents an
overview of the architecture and shows how the representa-
tion generated by the encoder network is integrated into the
CNN training. Note that the two networks are trained consec-
utively, as depicted in Figure 1. The encoder representations
generated in step (2) are not changed by the CNN. We apply
dropout for regularization on the whole concatenated feature
vector, before the final softmax classification. The multi-view
objective function presented in Equation (2) combines three
cross-entropy losses, one for emotion classes (Lemo), and one
for arousal (Laro) and valence (Lval) scores each. The pa-
rameters α and β control the weight of those losses. For more
details about the attention mechanism and the multi-view
learning procedure, the reader is referred to [9].

L = (1− α− β)Lemo + αLaro + βLval (2)

3. SPEECH CORPORA

For our experiments we use two datasets annotated for emo-
tion recognition: IEMOCAP [13] and MSP-IMPROV [14].
Both corpora have been created and annotated in a similar
way. They consist of English dyadic interactions between ac-
tors and are labeled with categorical emotion classes as well
as arousal and valence scores on a 5-point scale. Both corpora

contain audio and video data, but we use only audio for this
study.

We use samples from the four classes angry, happy,
sad, and neutral (as it was done frequently in other stud-
ies [4, 15, 16, 17, 18]). Note, that for IEMOCAP we merged
samples from the classes excitement and happy to form one
class happy. The dataset contains 5,531 utterances (1,103
angry, 1,636 happy, 1,708 neutral, 1,084 sad) grouped into
5 sessions (one female and one male speaker per session).
MSP-IMPROV consists of 6 sessions in the same manner (12
speakers) and contains 7,798 utterances (792 angry, 2,644
happy, 3,477 neutral, 885 sad). Since the input length for
a CNN has to be fixed for all samples, we set the maxi-
mal length to 7.5s. Longer turns are cut at 7.5s and shorter
ones are padded with zeros. Arousal and valence labels are
grouped into three classes each for multi-view learning. The
same range mapping as in [9, 19] is used: low: [1,2]; medium:
(2,4); high: [4,5].

As additional unlabeled data for AE training we use two
well-known corpora from the field of automatic speech recog-
nition (ASR): Tedlium (release 2) [20] and Librispeech [21].
Tedlium 2 is a collection of 1,495 Ted talks comprising 207
hours of transcribed English speech. We segmented the talks
according to the timing information in the transcripts, result-
ing in 92,973 segments. We have trained two models, one
with the full dataset and one with a smaller subset consist-
ing of 400 talks, respectively 25,303 segments. Librispeech
contains 1000 hours of read English speech from audiobooks.
Due to computational limitations, we use a subset of 100
hours, respectively 28,539 utterances.

4. EXPERIMENTAL RESULTS

4.1. Setup

The baseline for this study is the ACNN model without any
additional representation data (right-hand side of Figure 1).
We conduct 5-fold cross validation on IEMOCAP, taking
samples from 8 speakers as train and development sets and
the ones from the remaining 2 speakers as resprective test set.

For generating additional feature representations, we train
autoencoders on four datasets with the following motivations.

• The main research question is whether additional un-
labeled data can be utilized to improve the accuracy
of SER. For that purpose, we train an AE on the full
Tedlium 2 corpus as the main experiment.
• As control condition, we train an AE only on IEMO-

CAP itself (respectively MSP-IMPROV for cross-
corpus evaluation). In doing so, we can verify the
effect of additional data compared to just using an AE
representation of the test corpus itself.
• To investigate a potential effect of the amount of ad-

ditional data, we train a model on a small subset of
Tedlium.
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• To confirm our findings, we use another kind of addi-
tional data in form of a subset of Librispeech.

Another research question we investigate is the effect of
our approach on cross-corpus evaluation. For that, we use
IEMOCAP as training set and MSP-IMPROV as test set (in
the same four conditions as described above).

We report mean, maximum and minimum results from ten
runs of each experiment with different random seeds in order
to observe variations. All results represent unweighted aver-
age recall (UAR) which is the considered a suitable measure
for unbalanced datasets.

4.2. Hyper-parameters

The encoder and decoder of the AE consist both of 2 lay-
ers with 256 gated recurrent units (GRU) each. After testing
several combinations of uni- and bidirectional encoders and
decoders with regard to the reconstruction loss, we found that
using a unidirectional encoder and a bidirectional decoder is a
good choice. We apply a learning rate of 0.001 and a dropout
rate of 0.2 and train the models for 64 epochs (respectively 32
epochs for the full Tedlium model).

Our ACNN model is implemented with tensorflow [22].
We use stochastic gradient descent with an adaptive learn-
ing rate (Adam [23]). The model’s hyper-parameters are:
200 convolutional filters of size 26x10 (spanning all 26 log-
Mel filter-banks), convolutional stride of 3, pooling size of
30 (1-dimensional because convolution outputs a vector), and
a Glorot uniform initialization [24] of kernel weights. The
model is trained for 100 epochs and we apply a dropout rate of
0.8 for IEMOCAP and 0.7 for MSP-IMPROV to the last layer.
We found that this is necessary to prevent overfitting because
the datasets are relatively small. For multi-view learning, we
control the influence of arousal/valence predictions on the to-
tal loss function with a weight of 0.2 for each.

4.3. Results

Table 1 presents the results of all conditions described in sec-
tion 4.1. The left-hand side of the table shows the perfor-
mance on IEMOCAP (5-fold cross validation) and the right-
hand side the results of cross-corpus evaluation (trained on
IEMOCAP and tested on MSP-IMPROV).

In both cases we observe consistent improvements over
the baseline when adding the represenations generated by the
different AE models. The results for the control condition are
similar to (IEMOCAP) or even below (MSP-IMPROV) the
baseline. This indicates that it is in fact the additional speech
data which helps improving the performance. It can also be
seen that adding more data increases the performance further,
as the best results are achieved with the full Tedlium corpus.

For IEMOCAP, we achieve a mean UAR of 59.54% which
is comparable with state-of-the-art results on this 4-class sub-
set. To the best of our knowledge, the best results in the lit-

(a) ACNN baseline. (b) ACNN+AE (full Tedlium).

Fig. 2: Confusion matrix for mean results on IEMOCAP.

erature are 60.9% [17] and 62.5% [25]. However, strict com-
parison remains difficult because there are no standardized
train and test splits and many factors affect the result. Those
two studies match our conditions almost completely (emo-
tion classes, UAR as measure, merging happy and excited)
with the exception that they used leave-one-speaker-out cross
validation as opposed to leave-one-session-out.

IEMOCAP MSP-IMPROV
(cross-corpus evaluation)

µ min max µ min max
BL 58.03 56.78 59.12 42.99 42.19 44.14
C 58.07 56.56 59.68 42.37 41.20 43.37
sT 58.85 57.01 60.10 45.21 43.74 46.78
Li 59.05 57.89 60.18 44.82 42.98 46.33
fT 59.54 58.16 60.15 45.76 45.02 46.69

Table 1: Results measured in UAR. BL - Baseline without
additional represenation, C - control condition (AE trained on
IEMOCAP/MSP-IMPROV), sT - small Tedlium subset, Li -
Librispeech, fT - full Tedlium.

To gain more insights about the results, we analyze error
distributions in the confusion matrix in Figure 2, showing the
mean results across all ten runs on IEMOCAP. We see that the
ACNN+AE model has a higher accuracy for sad (slight dif-
ference), neutral, and angry. However, for happy the accuracy
drops below the baseline. The percentages of happy-angry
confusions are more balanced when adding the AE represen-
tations, which indicates that the baseline model has a stronger
bias for happy which is counterbalanced to a certain extent in
the ACNN+AE model.

5. VISUALIZATION OF SPEECH
REPRESENTATIONS

In this section, we present visualizations of both the learnt
ACNN representation (last layer before softmax) and the rep-
resenation from the AE trained on Tedlium. We want to inves-
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(a) Class labels. (b) Arousal scores. (c) Valence scores.

Fig. 3: t-SNE visualizations of the last hidden layer of the ACNN for IEMOCAP.

(a) Class labels. (b) Arousal scores. (c) Valence scores.

Fig. 4: t-SNE visualizations of the AE representations for IEMOCAP (AE trained on full Tedlium).

tigate what the two models learn with regard to different as-
pects, such as emotion class, speaker identity and gender, and
arousal/valence scores. Figures 3 and 4 show 2D projections
generated with t-distributed stochastic neighbor embeddings
(t-SNE) [26]. In Figures 3a and 4a we excluded the class neu-
tral for visual clarity. Neutral samples are in both cases dis-
tributed across the whole plot and do not form a well-defined
cluster. This finding has also been reported in [2].

It can be seen that the ACNN is capable of separating sad
from angry to a certain extent. The class happy, however,
forms a high-variance cluster which largely intersects with
angry, which explains the high confusion rates seen in Fig-
ure 2. The plots for arousal and valence show that the model
is much more discriminative for arousal than for valence. This
obervation is in line with related work on SER [2, 27, 28, 29,
30].

Interestingly, the visualizations of the AE representation
in Figure 4 show similar patterns (despite no emotion labels
are involved). This indicates that the autoencoder implicitly
learns to separate low and high arousal, and therefore angry
and sad samples can be distinguished surprisingly well (which
explains the boost for angry in the results in Figure 2).

Regarding speaker gender and identity we found that both

representations are invariant to these factors, i.e. no separable
clusters can be found in the 2D projections. These plots are
not included because of space limitations.

6. CONCLUSIONS

In this paper, we have shown that incorporating representa-
tions generated by an autoencoder that was trained on a large
dataset, leads to consistent improvements in recognition ac-
curacy of the presented SER model. Further, we presented
t-SNE visualizations that reveal the discriminative strength of
those representations with regard to low and high arousal. Fu-
ture work includes experimentation with different variants of
autoencoders and investigation in generative adversarial net-
works for representation learning.
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