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ABSTRACT

Most state-of-the-art dialogue state tracking (DST) methods
infer the dialogue state based on ground-truth transcriptions
of utterances. In real-world situations, utterances are tran-
scribed by automatic speech recognition (ASR) systems,
which output the n-best candidate transcriptions (hypothe-
ses). In certain noisy environments, the best transcription
is often imperfect, severely influencing DST accuracy and
possibly causing the dialogue system to stall or loop. The
missed or misrecognized words can often be found in the
runner-up candidate transcriptions from 2 to n, which could
be used to improve accuracy of DST. However, looking be-
yond the top-ranked ASR results poses a dilemma: going too
far may introduce noise, while not going far enough may not
uncover any useful information. In this paper, we propose a
novel approach to automatically determine the optimal time
to stop reexamining runner-up ASR transcriptions based on
deep reinforcement learning. Our method outperforms the
baseline system, which uses only the top-1 ASR result, by
3.1%. Then, we select the dialogue rounds with the top-10
largest word error rate (WER), our method can improve DST
accuracy by 15.4%, which is five times the overall improve-
ment rate (3.1%). This improvement was expected because
our proposed method is able to select informative ASR results
at any rank.

Index Terms— Automatic Speech Recognition, Dialogue
State Tracking, Deep Reinforcement Learning, Deep-Q Net-
work

1. INTRODUCTION

Dialogue state tracking (DST) is an important component of
a dialogue system [1]. It keeps track of the current state in
the overall architecture or flow of the dialogue. The dialogue
state encodes the information needed to successfully retain
and finish a dialogue, such as users’ goals or requests. In

the slot-filling schema, the state comprises a predefined set
of variables with a predefined domain of expression for each
of them. In the recent context of end-to-end machine learn-
ing dialogue systems, state tracking is an essential element of
such architectures [2, 3, 4, 5].

Currently, most DST systems infer the dialogue state
based on manual transcriptions of utterances [6]. In real-
world situations, however, utterances are transcribed by au-
tomatic speech recognition (ASR) systems. Such systems
output the n-best candidate transcriptions. In certain noisy
environments, the best transcription is often imperfect; that
is, some words are missed or incorrectly recognized, severely
influencing DST accuracy and possibly causing the dialogue
system to stall or loop.

Table 1 is a list of the top five ASR results of a users re-
sponse in a human-machine dialogue selected from the of-
ficial dataset of the 2nd Dialogue State Tracking Challenge
(DSTC), the top research challenge in the field:

Table 1: An example of top five ASR results

System : What kind of food would you like?
rank ASR result of the user utterance score

1 which for -0.333899
2 which four -2.572319
3 price for -2.795018
4 for -3.591716
5 which french for -3.626649

We can see that in the top 4 results, no food type appears.
However, the rank-5 result contains the keyword french. Ac-
cording to our observations, the missed or incorrectly recog-
nized words can often be found in the runner-up candidate
transcriptions from 2 to n, which could be used to improve
accuracy of DST. However, looking beyond the top-ranked
ASR results poses a dilemma: going too far (n is too large)
may introduce noise, while not going far enough may not un-
cover any useful information. In this paper, we propose a
novel approach to automatically determine the optimal time
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to stop reexamining runner-up ASR transcriptions based on
deep reinforcement learning. Our system employs the deep-
Q neural network model to decide whether that current ASR
should be accepted and whether the next ASR result should be
examined. The process then repeats until the model decides
to stop.

2. RELATED WORK

2.1. Dialogue State Tracking

In recent years, there have been many studies related to the
tracking of the dialogue state. Most commercial systems have
used rule-based methods [7, 8] to update the dialogue state
based on the language understanding result with the high-
est confidence [9]. The most widely recognized competi-
tion in this task is the Dialogue System Technology Chal-
lenge [10], formerly the Dialogue State Tracking Challenge
(DSTC), which is organized by Cambridge University and
Microsoft Research. The challenge has been held six times
since 2013 with new themes every year. Since our research
explores how to effectively select multiple ASR results in
human-machine dialogues, we use the DSTC 2 dataset, which
contained human-computer dialogues related to restaurant.

2.2. Reinforcement Learning

At present, reinforcement learning approaches can roughly
be divided into two types: those that model the environment
where the agent is situated and those that do not. The latter,
such as Q learning [11] and Sarsa [12], are called model-free.
On the other hand, in model-based approaches, the real world
needs to be modeled and a virtual environment needs to be
constructed. Another classification method is based on prob-
ability or value-based differentiation, such as Policy Gradient
based on probability [13] and value-based learning such as Q
learning. There are also methods combining the advantages of
the two such as Actor-Critic [14] in which actor acts based on
probability and critic gives values based on actions. The last
classification method is online learning and offline learning.
Online learning refers to learning based on one’s own past ex-
perience, while off-line learning can be learned by watching
others’ experiences.

Q learning is one of the most representative offline learn-
ing methods, and with the progress of deep learning, there has
been further research on deep-Q network [15].

Table 2: An example of actions that are taken in a round.

System : Would you like something in the cheap, moderate, or expensive price range?
rank ASR result of the user utterance Action

1 i don’t care about the price range Accept and proceed
2 i don’t about the price range Discard and proceed
3 i don’t care care about the price range Discard and stop
4 i don’t care the price range NULL
5 i don’t care about what the price range NULL

2.3. Q-Learning

Q-learning updates the value of a state-action pair after the ac-
tion has been taken in the state and an immediate reward [16]
has been received. Q-learning will converge to an optimal
value function under conditions of adequately visiting each
state-action pair, but often needs many learning episodes to
do so [11]. When an action a is taken in state s, the value of
a state-action pair, is updated as

Q(s, a)← Q(s, a) + α(r + γ Q(s′)−Q(s, a)) (1)

where α ∈ [0, 1] is the learning rate, r is the reward, γ is the
discount factor, s′ is the next state, andQ(s) = maxaQ(s, a).
The actions are chosen by some exploration policies, such as
an ε-greedy approach, which selects the action that maximizes
the Q-value with probability 1 − ε and a random action with
probability ε. These policies are chosen for balancing the ex-
ploration of uncertain states and actions with the exploitation
of the current policy. In a stationary environment, it is also
common to decay the exploration rate (ε) as a policy is learned
as another way to begin to deal with this tradeoff.

3. METHOD

3.1. Problem Formulation

For each user utterance, we aim to perform one round of ex-
amining all ASR results from the most to the least probable
and selecting informative ones. We formulate this problem as
a reinforcement learning (RL) task.

RL addresses the problem of an agent learning to act in
an environment to maximize a scalar reward signal. At each
time step t = 0, 1, 2, . . . , the environment provides the agent
with an observation st, the agent responds by picking an ac-
tion at. Then, the environment offers the next reward rt+1,
discount γt+1 and state st+1. This interaction is formalized as
a Markov Decision Process (MDP) [17, 18]. In our system,
MDPs will be episodic with a constant γt+1 = γ ∈ [0,1],
except on termination where γ = 0. Next, we describe the
state, action, and reward in our formulation. The ASR result
under examination is referred as the rank-i ASR result.

State: The current state (st) of our RL model contains three
elements: the vector of the rank-i ASR result (of the user
message), the vector of the previous system message, and
the score of the rank-i ASR result. In Figure 1, we use the
FastText [19] word-embedding model, which is trained on the
whole Wikipedia corpus, to generate the representation vector
for each word. Then, we feed vectors of the system message
word by word into an long-short-term-memory (LSTM) [20]
encoder to generate the representation vector vs of the whole
system message sentence. We also feed vectors of the ASR
result word by word to another LSTM encoder to generate the
representation vector va for the whole ASR result sentence.

7376



Last, we concatenate vs, va and the score of the ASR result
to generate the representation of st.

Fig. 1: Generation of state representation

Action: After the rank-i ASR result is processed, our RL
model decides which of four actions to take next: proceed
and accept, proceed and drop, stop and accept, and stop and
drop. An example of each action is given below:

1. Accept and proceed: The rank-i ASR result is added
to the reserve list and the rank-i+ 1 ASR result is read
next.

2. Accept and stop: The rank-i ASR result is added to
the reserve list and the system stops reading.

3. Discard and proceed: The rank-i ASR result is dis-
carded and the rank-i+ 1 ASR result is read next.

4. Discard and stop: The rank-i ASR result is discarded
and the system stops reading.

Table 2 shows the agent accepting the first ASR result, dis-
carding the second, and stopping after accepting the third.
Once the system has finished reading all ASR results, for
each ASR result r in the reserve list, r is converted to an
embedding vector and fed to the baseline DST model, which
can only read one ASR result at a time.

Reward: After each action is taken, the environment should
reward the agent to guide the decision model in the correct
direction in Table 3. In our system, we only give non-zero
rewards for the final action of each round of ASR result se-
lection. If at least one ASR result is selected in this round,
we reward the system with the DST accuracy [0-1]. If no
ASR result is selected in this round, the reward is -1. Actions
taken prior to the final action in a selection round are always
given a reward of zero. In Table 4, we can see that the first
two actions of Round 0 get rewards of 0, while only the last
action gets a positive reward, 0.66.

3.2. Deep reinforcement learning and deep-Q network

In deep reinforcement learning, the various components of
agents, such as policies π(s, a) or values Q(s, a), are repre-
sented with deep neural networks. The parameters of these

Table 3: Action reward scheme

Condition Reward
If no ASR is selected and -1the agent stops reading

if at least one ASR result is DST accuracy [0-1]selected and the agent stops reading
Other cases 0

Table 4: Action reward example

Round-id Action Reward
0 Accept and proceed 0
0 Accept and proceed 0
0 Accept and stop 0.66
1 Discard and process 0
1 Accept and stop 0.33

networks are trained by gradient descent to minimize the
value of the loss function. The deep-Q network (DQN) [21]
integrates deep networks and reinforcement learning by us-
ing a convolutional neural network to approximate the action
values for a given state st.

At each step, the agent perceives the current state and
chooses an action ε-greedily, and then adds a transition to
an experience-replay memory, which keeps the last million
transitions. The parameters of the neural network are opti-
mized by using stochastic gradient descent to minimize the
loss function value, as follows:

L = (rt+1 + γ max
a′

Qθ(st+1, a
′)−Qθ(st, at))2 (2)

where t is a time step randomly picked from the replay mem-
ory. The gradient of the loss is back-propagated only into the
parameters θ of the online network; the term θ represents the
parameters of a target network, a periodic copy of the on-
line network which is not directly optimized. We employ
Adam, an algorithm for first-order gradient-based optimiza-
tion of stochastic objective functions, on mini-batches sam-
pled uniformly from the experience replay. This means that
in the loss function above, the time index t will be a random
time index from the last million transitions, rather than the
current time. We use a second network (target network) dur-
ing the training procedure. This second network is used to
generate the target-Q values that will be used to compute the
loss function value for every action during training. The use
of experience replay and target networks enables relatively
stable learning of Q values.

4. EXPERIMENTS AND RESULTS

4.1. Dataset

In our experiments, we use the dataset published by DSTC 2.
The data set contains a set of user-computer conversations, the
first 10 ASR results for each user message, and the dialogue
state label for each user message. The training set, develop-
ment set, and test set contain 1612, 506, and 1117 conversa-
tions, respectively. Eight slots are defined in the DSTC 2 data
set, where ”area”, ”food” and ”price range” are provided by
the user. In DSTC 2, the dialog state is given as a tuple of
three slot-value pairs, such as ”area = north, food = Chinese,
pricerange = moderate”.
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4.2. Experimental Settings

Since our model requires a top-performed DST system that
reads one input at a time, we use Plátek et al.’s [6]1 because it
outpeforms all publicly available systems. Table 5 shows the
parameters we use for the DQN. The memory size is preset to
100,000. The parameter gamma, set to 0.95, is used to atten-
uate future awards. The word-embedding size and sentence-
embedding size are both set to 300. Table 6 shows the param-
eters of Plátek et al.’s DST system. The batch size is set to
5 because this value achieves maximum performance in the
development set. The parameter use db encoder is set to true,
indicating that the DSTC ontology is used in our experiment.

Table 5: Parameter settings of DQN

Parameter Value
memory 100000

γ 0.95
word embedding size 300

sentence embedding size 300
learning rate 0.01

Table 6: The parameters of
Plátek et al.’s DST system

Parameter Value
Batch size 5

encoder size 100
word embed size 100
use db encoder 150
encoder layers 1
decoder layers 1
learning rate 0.0005

epochs 50

4.3. Results and Discussion

We can observe from Table 7 that our method outperforms
the baseline system, which uses only the rank-1 ASR result,
by 3.1%. This improvement is expected because our method
is able to select informative ASR results at any rank. We also
find that integrating the top K ASR results does not improve
the performance. Because the top K ASR results are noisy,
simply integrating all the results without selection cannot im-
prove the performance. In Table 8, we further analyze the
performance on the top N% largest word-error-rate (WER)
utterances in the test set (N = 10, 20, 30). It is clear that
the proposed approach remarkably outperforms the baseline
on the utterances with larger WER. This further verifies that
the proposed approach mitigates the impact of ASR errors on
DST.

We divide all errors into three types. The first type is
caused by Plátek et al.’s DST system invoked by our DQN-
based selection. In Table 9, we can see that the rank-1 and
rank-2 result are “nor,” and “North.” Our DQN model ac-
cepts the rank-2 result and the state should be changed to
“[area=North],” However, the called DST system incorrectly
outputs “none” when the input is “North,” so the state is pre-
dicted to be wrong.

The second type of error occurs when none of the top-
10 ASR results contain any useful information about the dia-

1We traced and found that the original Plátek’s system used both the man-
ual transcription and the rank-1 ASR result as the input. For fair comparison,
we revised their code to use only the rank-1 ASR result. The code of Plátek’s
system is at https://github.com/oplatek/e2end.

Table 7: Performance com-
parison with top-K ASR.

Configuration Test
top-1 ASR 56.9%
top-2 ASR 55.4%
top-3 ASR 54.6%
top-4 ASR 54.7%
top-5 ASR 53.3%

Our Method 60.0%

Table 8: Performance analysis on utterances with top N
% largest WER.

top-N largest WER utterances
N = 10% N = 20% N = 30%

Baseline 47.7% 51.0% 54.2%
Our Method 63.1% 57.6% 54.7%

Table 9: An example of the first error type.

System : What part of town do you have in mind?
rank ASR result of the user utterance score

1 nor -0.521046
2 North -1.647163

logue state. In this case, DST accuracy will not be improved
by examining runner-up ASR results.The third type occurs
when our DQN model incorrectly discards the best runner-up
ASR result based on its experience in the training process. In
this case, the DST system cannot derive the correct dialogue
state.

5. CONCLUSION

This paper describes a novel method of dialogue state track-
ing with candidate selection from the n-best speech recog-
nition hypotheses by deep reinforcement learning. It is one
of the first attempts to develop a DST method that uses only
ASR results as the input instead of manual transcriptions of
user utterances. In addition to the experimental results pre-
sented in the experimental section, our proposed approach
offers three advantages compared to state-of-the-art tracking
methods. First, we are the first to employ the DQN to se-
lect informative runner-up ASR results to improve DST. Sec-
ond, we have designed a set of actions to control the DQN
modules behavior. Third, our method is based on reinforce-
ment learning, with the DST accuracy of each round being
used as that rounds reward. As a result, our method does not
require any extra human efforts to carry out labeling and re-
warding. Compared to most DST methods, which infer the di-
alogue state based on manual transcriptions of utterances, our
method can select informative n-best ASR results to improve
DST, making application of our DST system more practicable
in real-world (noisy) environments. In future work, we plan
to examine not only the ASR results of the current utterance
but also those of the previous round in the same dialogue.
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