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ABSTRACT 

Spoken document retrieval (SDR) has become an important 
research subject due to the immenseness of multimedia data 
along with speech have spread around the world in our daily life. 
One of the fundamental challenge facing SDR is that the input 
query usually contains only a few words, which is too short to 
convey the information need of a user. In order to mitigate the 
problem, a well-practiced strategy is to reformulate the original 
query by performing a pseudo-relevance feedback process. 
Although several studies have evidenced its ability and 
capability for enhancing the retrieval performance, the time-
consuming problem makes it hard to be used in reality. 
Motivated by the observations, in this paper, we concentrate on 
proposing a novel framework, which targets at generating a set 
of pseudo-relevant representations for a given query 
automatically, and eliminating the time-wasting problem. On top 
of the generated representations, we further investigate a novel 
query reformulation mechanism so as to improve the retrieval 
performance. A series of empirical SDR experiments conducted 
on a benchmark collection demonstrate the good efficacy of the 
proposed framework, compared to several existing strong 
baseline systems. 

Index Terms— Spoken document retrieval, pseudo-
relevance feedback, query reformulation, representation 

1. INTRODUCTION 

Owing to large volumes of multimedia data associated with 
spoken documents made available to the public, spoken content 
analysis has become an attractive and rising research subject 
over the past two decades in the speech processing community 
[1-3]. There are two main streams of research on processing a 
given text/spoken query and a spoken document. On one hand, 
spoken term detection (STD) [4, 5] embraces the goal of 
extracting probable spoken terms or phrases inherent in a spoken 
document that could match the query words or phrases literally; 
on the other hand, spoken document retrieval (SDR) [4, 6] 
revolves more around the notion of relevance of a spoken 
document in response to the query. It is generally agreed upon 
that a document is relevant if it could address the stated 
information need of the query, not because it just happens to 
contain all the words in the given query [7, 8]. 

More recently, deep learning has gained significant interest of 
research and experimentation in many applications because of its 
remarkable performance [9, 10, 11]. When it comes to the field 
of natural language processing (NLP), word embedding methods 
can be viewed as pioneering studies [12-15]. A common thread 

of leveraging word embedding methods to NLP-related tasks is 
to represent a given paragraph (or sentence, document, and query) 
by simply taking an average over the word embeddings 
corresponding to the words occurring in the paragraph [16, 17]. 
As such, the similarity degree between a pair of paragraphs can 
be readily quantified by using one of the existing ranking 
mechanisms based on the learned representations. Celebrated 
methods developed in this vein include the continuous bag-of-
words model [14], the skip-gram model [14, 18], the global 
vector model [15], to name just a few. Orthogonal to the NLP 
community, many research efforts have been devoted to the 
generative models because of the exceeding performance gains 
on image generation [19] and style transfer [20] tasks. The 
research trend can date back to the generative adversarial 
network (GAN) [21], which is mainly consisted of a generator 
and a discriminator. The discriminator, in general, is learned to 
distinguish the artificial samples from real distributions; the 
training objective for generator is to create high-quality and 
realistic samples, which expect to fool the trained discriminator. 
Since the two processes aim at optimizing their individual, but 
mutually conflicting, targets, a competitive minimax objective 
function is thus derived [22-24]. On top of the modeling 
principle, various GAN-based methods have demonstrated 
successful experiences and charming results in many 
applications [19, 20, 25]. 

One critical and practical issue facing SDR is that the input 
text/spoken query is usually too short to carry the information 
need of a user. In order to mitigate the fundamental challenge, a 
promising strategy is to reformulate the original query 
representation with extra statistics so as to boost the retrieval 
performance [26, 27]. The query reformulation methods devised 
following the line of research can be grouped into two distinct 
classes. One is to leverage external resources, such as Wikipedia 
or WordNet, to expand and reorganize the original query. The 
other is to reformulate the original query by referring to a small 
set of feedback documents locally collected from an initial round 
of retrieval, i.e., the so-called pseudo-relevance feedback (PRF) 
process [27, 28]. Since the former requires more sophisticated 
natural language processing techniques, including semantic 
representation and inference, as well as natural language 
generation, most efforts have been concentrated on launching the 
query reformulation methods by using the top-ranked feedback 
documents locally obtained from PRF [7, 29]. Although several 
studies have confirmed the effectiveness of PRF, the time-
consuming problem makes it unappealing for realistic 
applications.  

Motivated by the above observations, this paper strives to 
develop an efficient and effective modeling framework, which 
targets at generating pseudo-relevant statistics for a given query 
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automatically so as to re-estimate an enhanced query 
representation without performing the time-consuming PRF 
process. To sum up, the major contributions of this paper are at 
least three-fold. First, a novel framework, which not only 
concentrates on generating pseudo-relevant representations for a 
given query, but aims at excluding the limitation of time-wasting 
problem, is proposed. Second, stemming from such a framework, 
we thus propose an effective query reformulation method so as to 
enrich the original query. Finally, a series of empirical evaluations 
and comparisons are conducted on a benchmark SDR corpus. 

2. RELATED WORK 

2.1. The Classic Word Embedding Methods 
The neural network language model [13] is the most-known 
seminal study on developing various word embedding methods. 
It estimates a statistical (N-gram) language model, formalized as 
a feed-forward fully-connected neural network, for predicting 
future words while inducing word embeddings as a by-product. 
Such an attempt has already motivated many follow-up 
extensions to develop similar methods for probing latent 
semantic and syntactic regularities in the representation of words. 
Representative methods include, but are not limited to, 
continuous bag-of-words (CBOW) model [14], skipgram (SG) 
model [14, 18], and global vector (GloVe) model [15]. 

Rather than seeking to learn a statistical language model, the 
CBOW, the SG, and the GloVe models manage to obtain a dense 
vector representation (embedding) of each word directly. The 
structure of CBOW is similar to a feed-forward fully-connected 
neural network, with the exception that the non-linear hidden 
layer in the former is removed. Formally, given a sequence of 
words, 𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑇𝑇 , the objective function of CBOW is to 
maximize the log-probability for each segment of words [14]: 

∑ log
exp (𝐯𝐯𝑤𝑤�𝑡𝑡∙𝐯𝐯𝑤𝑤𝑡𝑡)

∑ exp (𝐯𝐯𝑤𝑤�𝑡𝑡∙𝐯𝐯𝑤𝑤𝑖𝑖)
|𝑉𝑉|
𝑖𝑖=1

𝑇𝑇
𝑡𝑡=1       (1) 

where 𝐯𝐯𝑤𝑤𝑡𝑡  denotes the vector representation of the 𝑡𝑡th word 
𝑤𝑤𝑡𝑡 in the training corpus, 𝐯𝐯𝑤𝑤�𝑡𝑡  denotes the (weighted) average 
of vector representations of the contextual words of  𝑤𝑤𝑡𝑡 , 𝑇𝑇 
denotes the length of the training corpus, and |𝑉𝑉| is the size of 
the vocabulary 𝑉𝑉. The concept of CBOW is motivated by the 
distributional hypothesis [30], which states that words with 
similar meanings often occur in similar contexts, and it is thus 
suggested to look for 𝑤𝑤𝑡𝑡  whose word representation can 
capture its context distributions well. In contrast to the CBOW 
model, the SG model employs an inverse training objective with 
a simplified feed-forward fully-connected neural network [18]: 

∑ ∑ log
exp (𝐯𝐯𝑤𝑤𝑡𝑡+𝑗𝑗∙𝐯𝐯𝑤𝑤𝑡𝑡)

∑ exp (𝐯𝐯𝑤𝑤𝑖𝑖∙𝐯𝐯𝑤𝑤𝑡𝑡)|𝑉𝑉|
𝑖𝑖=1

𝑐𝑐
𝑗𝑗=−𝑐𝑐&𝑗𝑗≠0

𝑇𝑇
𝑡𝑡=1     (2) 

where 𝑐𝑐 is the windows size of the contextual words for the 
central word 𝑤𝑤𝑡𝑡 . Despite CBOW and SG models, the GloVe 
model suggests that an appropriate starting point for word 
representation learning should be associated with the ratios of 
co-occurrence probabilities rather than the prediction 
probabilities [15]. More precisely, GloVe makes use of weighted 
least squares regression, which aims at learning word 
representations by preserving the co-occurrence frequencies 
between each pair of words: 

∑ ∑ 𝑓𝑓 �𝑋𝑋𝑤𝑤𝑖𝑖𝑤𝑤𝑗𝑗� �𝐯𝐯𝑤𝑤𝑖𝑖 ∙ 𝐯𝐯𝑤𝑤𝑗𝑗 + 𝑏𝑏𝑤𝑤𝑖𝑖 + 𝑏𝑏𝑤𝑤𝑗𝑗 − log �𝑋𝑋𝑤𝑤𝑖𝑖𝑤𝑤𝑗𝑗��
2

|𝑉𝑉|
𝑗𝑗=1

|𝑉𝑉|
𝑖𝑖=1

 (3) 
where 𝑋𝑋𝑤𝑤𝑖𝑖𝑤𝑤𝑗𝑗  denotes the number of times words 𝑤𝑤𝑖𝑖  and 𝑤𝑤𝑗𝑗 
co-occur in a pre-defined sliding context window; 𝑓𝑓(∙)  is a 
monotonic smoothing function used to modulate the impact of 
each pair of words involved in the model training; and 𝐯𝐯𝑤𝑤 and 
𝑏𝑏𝑤𝑤 denote the word representation and the bias term of word 𝑤𝑤, 
respectively. 
2.2. The Generative Adversarial Networks 
In recent years, a popular research subject in the deep learning 
community is the generative adversarial networks (GANs) [21]. 
Opposite to classic research on neural networks, which mainly 
focuses on making decisions or regressions, GANs intend to 
build a generative model by neural networks. Generally, a GAN 
is at least comprised of two indispensable components, namely 
the generator 𝐺𝐺(∙) and the discriminator 𝐷𝐷(∙). The former tries 
to generate sharp and realistic samples, which close to the real 
data distribution, from a given noisy distribution, while the latter, 
on the contrary, concentrates on differentiating between real data 
and synthesized samples. Accordingly, the two competitive 
adversaries can be optimized by a minimax objective [21, 22]: 

min
𝐺𝐺

max
𝐷𝐷

𝑉𝑉(𝐷𝐷,𝐺𝐺) = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑(𝑥𝑥)�log𝐷𝐷(𝑥𝑥)�

        +𝔼𝔼𝑧𝑧~𝑝𝑝𝑧𝑧(𝑧𝑧) �log �1 − 𝐷𝐷�𝐺𝐺(𝑧𝑧)���
  (4) 

where 𝑝𝑝𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑(∙) stands for real data distribution, and 𝑝𝑝𝑧𝑧(∙) is a 
prior used to govern the input noisy data 𝑧𝑧. In practiced, the 
training procedure is performed iteratively by dictating that each 
network achieves optimally with the assumption that the other 
network is optimal. 

3. LEARNING PSEUDO-RELEVANT 
REPRESENTATIONS  

3.1 The Proposed Methodology 
Due to the fact that a query usually consists of only a few words, 
the query representation of the query 𝑄𝑄 might not be accurately 
presented. With the alleviation of this deficiency as motivation, 
there are several studies dedicate to estimating a more accurate 
query representation, saying that it can be approached through a 
pseudo-relevance feedback (PRF) process [8, 27, 28]. The most 
simple but efficient method is the Rocchio’s algorithm [7, 31], 
which introduces a mechanism of incorporating pseudo 
relevance feedback information into the vector space model [32]. 
Formally, for a given query 𝑄𝑄 , a set of top-ranked feedback 
documents 𝑅𝑅𝑄𝑄 = {𝑑𝑑1

𝑄𝑄,⋯ , 𝑑𝑑|𝑅𝑅𝑄𝑄|
𝑄𝑄 } can be obtained by performing 

an initial-round of retrieval. After that, each feedback document 
(and the query) is expressed by a fixed-dimensional vector 
representation, which can be either composed by term 
frequency-inverse document frequency (TF-IDF) statistics or by 
taking an average over the word embeddings corresponding to 
the words occurring in the document (and query). Consequently, 
the Rocchio’s algorithm adjusts the original query representation 
toward the center of these feedback document statistics [31]: 

𝐯𝐯𝑄𝑄′ = 𝐯𝐯𝑄𝑄 + 1
|𝑅𝑅𝑄𝑄|

∑ 𝐯𝐯𝑑𝑑𝑟𝑟𝑄𝑄
|𝑅𝑅𝑄𝑄|
𝑟𝑟=1      (5) 

where 𝐯𝐯𝑄𝑄 and 𝐯𝐯𝑑𝑑𝑟𝑟𝑄𝑄 denote the vector representations for query 
𝑄𝑄  and document 𝑑𝑑𝑟𝑟

𝑄𝑄 , respectively. Finally, the new query 
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representation 𝐯𝐯𝑄𝑄′  can be used to select relevant documents 
based on the cosine similarity measure. Although several query 
reformulation methods based on PRF have been proposed and 
proven their success in various IR-related tasks, the time-
consuming problem makes it unappealing for realistic 
applications. To overcome this deficiency, we hence investigate 
a novel framework, which aims at generating a set of pseudo-
relevant representations automatically and also deducing a more 
informative and robust vector representation for a user’s query 
so as to boost the retrieval performance. 

To crystallize the idea to go, we begin the framework by 
employing a generator 𝐺𝐺(∙)  and a discriminator 𝐷𝐷(∙) . The 
former is used to synthesize a set of pseudo-relevant 
representations for a given query, and the latter is introduced to 
criticize the generator as well as guide the model training. More 
formally, for a training query 𝑄𝑄 and its corresponding feedback 
documents 𝑅𝑅𝑄𝑄 = {𝑑𝑑1

𝑄𝑄,⋯ , 𝑑𝑑|𝑅𝑅𝑄𝑄|
𝑄𝑄 }, the query and documents are 

first represented by vector representations, where the vector is 
simply taking an average over the word embeddings 
corresponding to the words occurring in the query/document. 
Then, the generator learns a mapping from the observed query 
representation 𝐯𝐯𝑄𝑄 and a random noisy vector 𝑧𝑧 to a generated 
representation 𝐺𝐺�𝐯𝐯𝑄𝑄, 𝑧𝑧�. Since the ultimate goal of 𝐺𝐺(∙) is to 
synthesize a set of representations, which are not only relevant 
but complementary to the given query, the discriminator is thus 
introduced. The discriminator is trained to do as well as possible 
at detecting the generator’s creations. Accordingly, 𝐷𝐷(∙) takes 
the original query representation 𝐯𝐯𝑄𝑄, and a feedback document 
representation (i.e., 𝐯𝐯𝑑𝑑𝑟𝑟𝑄𝑄) or a synthesized representation (i.e., 
𝐺𝐺�𝐯𝐯𝑄𝑄, 𝑧𝑧�) as input. After that, a decision score is obtained to 
indicate whether the input is real (i.e., 𝐯𝐯𝑑𝑑𝑟𝑟𝑄𝑄 ) or fake (i.e., 
𝐺𝐺�𝐯𝐯𝑄𝑄, 𝑧𝑧�). Hence, the discriminator not only has to distinguish 
fake examples (i.e., 𝐺𝐺�𝐯𝐯𝑄𝑄 , 𝑧𝑧�) from true ones ( i.e., 𝐯𝐯𝑑𝑑𝑟𝑟𝑄𝑄), but 
also needs to quantify the relationship between query and 
document representations. Consequently, a minimax objective 
function is derived to optimize the two adversaries: 

min
𝐺𝐺

max
𝐷𝐷

𝑉𝑉(𝐷𝐷,𝐺𝐺) = 𝔼𝔼𝐯𝐯
𝑑𝑑𝑟𝑟
𝑄𝑄~𝑝𝑝𝑄𝑄(𝐯𝐯

𝑑𝑑𝑟𝑟
𝑄𝑄) �log𝐷𝐷 �𝐯𝐯𝑄𝑄, 𝐯𝐯𝑑𝑑𝑟𝑟𝑄𝑄��

         +𝔼𝔼𝑧𝑧~𝑝𝑝𝑧𝑧(𝑧𝑧) �log �1 − 𝐷𝐷 �𝐯𝐯𝑄𝑄,𝐺𝐺�𝐯𝐯𝑄𝑄, 𝑧𝑧����
 (6) 

where 𝑝𝑝𝑄𝑄(∙) stands for real data distribution, and 𝑝𝑝𝑧𝑧(∙) is a 
prior used to govern the input noisy data 𝑧𝑧. By doing so, the 
generator anticipates to generate a set of representations, which 
act as those pseudo-relevant documents selected by PRF. In 
other words, the generator can produce fantastically realistic 
pseudo-relevant representations, which can fool the 

discriminator, for a given query. It is worthy to note that the 
proposed mechanism is similar to the condition-based GAN 
methods [33], but the major difference is that our method can be 
viewed by conditioning on a continuous random variable (i.e., 
𝐯𝐯𝑄𝑄 ), while the classic methods usually condition on a well-
defined and finite discrete category. Figure 1 schematically 
depicts the architecture of the proposed framework. 
3.2 The Retrieval Model 
Subsequently, based on a set of generated pseudo-relevant 
representations, denoted by 𝑅𝑅�𝑄𝑄 = {𝐯𝐯𝑑𝑑�1𝑄𝑄 ,⋯ ,𝐯𝐯𝑑𝑑�|𝑅𝑅�𝑄𝑄|

𝑄𝑄 }, for a given 
query 𝑄𝑄, we turn to reformulate the original query so as to boost 
the SDR performance. It is usually anticipated that the SDR 
system can thus probe more relevant documents by the enhanced 
query. Inspired by the Rocchio’s algorithm [31], an intuitive and 
straightforward strategy is to pool every generated 
representation weighted by its discriminant score, which 
distinguishes highly relevant representations from less relevant 
ones, to yield a new query representation: 

𝐯𝐯𝑄𝑄′ = 𝛽𝛽 ∙ 𝐯𝐯𝑄𝑄 + (1 − 𝛽𝛽) ∙ �∑ 𝑑𝑑(𝐯𝐯𝑄𝑄, 𝐯𝐯𝑑𝑑�𝑟𝑟𝑄𝑄) ∙ 𝐯𝐯𝑑𝑑�𝑟𝑟𝑄𝑄
|𝑅𝑅�𝑄𝑄|
𝑟𝑟=1 � (9) 

where 𝑑𝑑(𝐯𝐯𝑄𝑄 ,𝐯𝐯𝑑𝑑�𝑟𝑟𝑄𝑄) is the normalized discriminant score for each 
representation 𝐯𝐯𝑑𝑑�𝑟𝑟𝑄𝑄, and 𝛽𝛽 is a weighting factor to modulate the 
balance between the original query and the generated 
information. The discriminant score for 𝐯𝐯𝑑𝑑�𝑟𝑟𝑄𝑄  is given by the 
trained discriminator, that is 𝐷𝐷(𝐯𝐯𝑄𝑄 ,𝐯𝐯𝑑𝑑�𝑟𝑟𝑄𝑄), in this sudy. With the 
purpose of blending both literal and semantic information 
together, the proposed framework is thus linearly combined with 
the classic VSM, which determines the relevance score by 
referring to term frequency-inverse document frequency (TF-
IDF) statistics for both query and document. We term the entire 
process a generating pseudo-relevant representations framework 
and denote hereafter as GPR in short. To sum up, in the 
retrieval/test stage, the GPR will first generate a set of pseudo-
relevant representations for a given query. After that, an 
enhanced query representation will be constructed by using these 
synthesized representations. Finally, the enhanced query vector 
is used to rank the documents. Therefore, it is worth mentioning 
that the GPR can estimate an enhanced query representation 
without performing the time-consuming PRF process, and we 
anticipate to obtain a better retrieval result by referring to the 
new query vector. 

4. EXPERIMENTS 

4.1 Experimental Setup 
We used the Topic Detection and Tracking collection (TDT-2) [34] 
in the experiments. The Mandarin news stories from Voice of 
America news broadcasts were used as the spoken documents. All 
news stories were exhaustively tagged with event-based topic labels, 
which served as the relevance judgments for performance evaluation. 
The average word error rate obtained for the spoken documents is 
about 35% [35]. The Chinese news stories from Xinhua News 
Agency were used as our test queries. More specifically, in the 
following experiments, we will either use a whole news story as a 
“long query,” or merely extract the tittle field from a news story as 
a “short query.” The retrieval performance is evaluated with the 
commonly-used non-interpolated mean average precision (MAP) 
following the TREC evaluation [8]. In this study, both the generator 
𝐺𝐺(∙)  and the discriminator 𝐷𝐷(∙)  are implemented by fully 

 
Figure 1. Illustrations of the proposed framework. 
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connected deep networks with different model parameters 𝜃𝜃𝐷𝐷 and 
𝜃𝜃𝐺𝐺 , the optimizer is stochastic gradient decent method (SGD), and 
the activation function used in both 𝐺𝐺(∙)  and 𝐷𝐷(∙)  is the 
hyperbolic tangent, except that the output layer in the discriminator 
adopts the sigmoid. To obtain the model parameters, 819 training 
query exemplars with the corresponding top-ranked feedback 
documents are compiled. Based on that, the training instance is 
generated by 1) randomly selecting a training query, 2) picking one 
of its feedback documents to the query to be a true example, 3) 
randomly choosing a random vector from the noisy distribution, and 
4) generating a synthesized representation to form a fake example. 
4.2 Experimental Results 
In the first set of experiments, we explore the efficacies of 
several baseline systems, including the vector space model 
(VSM) [32], three classic word embedding methods [14, 15] (i.e., 
CBOW, SG, and GloVe), two classic paragraph embedding 
methods (i.e., DM [36] and EV [37]), and the classic Rocchio’s 
algorithm [31] for SDR. For all the baseline systems, each query 
and document is represented by a vector, and the relevance 
degree is computed by the cosine similarity measure. 
Furthermore, in this study, we also make a comparison between 
SDR and traditional text retrieval. Consequently, the retrieval 
results, assuming manual transcripts for the spoken documents 
to be retrieved (denoted by TD) are known, are also shown for 
reference, compared to the results when only the erroneous 
transcripts by speech recognition are available (denoted by SD). 
Experimental results are shown in the first block of Table 1. The 
best result within each column (corresponding to a specific 
evaluation condition) is type-set boldface. Inspection of these 
results reveals five noteworthy points. First, all of the word 
embedding and paragraph embedding-based methods 
outperform VSM by a large margin. Second, SG demonstrates 
superior results over CBOW and GloVe, which is consistent with 
other studies on several tasks. Third, for paragraph embedding-
based methods, EV, which learns to distill the most important 
information from the paragraph and exclude general background 
information, appears to be more flexible than DM, thereby 
yielding better results. Fourth, the Rocchio’s algorithm 
outperforms all the other methods in most cases, which indicates 
that the PRF process can really benefit the performance of 
retrieval. Finally, the performance gap between the retrieval on 
the manual transcripts (i.e., the TD case) and that on the 
recognition transcripts (i.e., the SD case) is about 6% in terms of 
MAP, which also shows that the recognition errors inevitably 
mislead the statistics for both query and document so as to 
degrade the retrieval performance. 

Next, we start to evaluate the proposed GPR framework for 
SDR. The results are presented in the second block of Table 1. 
At the first glance, the empirical results reveal that GPR achieves 
better results than various baseline systems in most cases. It is 
worthy to note that the Rocchio’s algorithm can be treated as our 
major challenger, because the Rocchio’s algorithm leverages the 
time-consuming PRF process to collect a set of feedback 
documents so as to reformulate a new query representation, 
while the proposed GPR infers an enhanced query vector by 
using a set of automatically synthesized representations. 
Consequently, we are supervised that GPR achieves comparable 
(or even better) results than Rocchio’s algorithm, which may 
implicitly imply that the generated representations are very 
robust and even can be used to replace the real ones. Furthermore, 

we make a step forward to linearly combine GPR and Rocchio’s 
algorithm (denoted by GPR+Rocchio’s). The results are also 
summarized in Table 1. As expected, the combination only 
achieves a small performance gain when compared to Rocchio’s 
algorithm or the proposed GPR, respectively. Thus, we can 
indeed conclude that the synthesized representations are not only 
robust but also really similar to those “real” representations. In 
the last set of experiments, we look into the impact of the number 
of generated documents on the GPR framework. As revealed by 
the results illustrated in Table 2, leveraging a small number of 
representations (e.g., 3 and 5) seems to be adequate for the TD 
cases, while a large number of representations (e.g., 5 and 10) 
seems to be suitable for the SD cases. This can be attributed to 
the fact that more extra statistics seems to be more robust to the 
recognition errors. Nevertheless, the way to systemically 
determine the optimal number of representations remains an 
open issue and needs further investigation. To sum up, a series 
of empirical experiments demonstrate the good efficacy and 
capacity of the proposed GPR framework. 

5. CONCLUSION 

In this paper, we have presented a novel framework, which can be 
leveraged to generate a set of pseudo-relevant representations for a 
given query. The framework has been evaluated on a SDR 
benchmark corpus. Experimental results demonstrate the 
remarkable superiority than other strong baselines compared in the 
paper, thereby indicating the potential of the new GPR framework. 
For future work, we will explore the incorporation of extra cues, 
such as acoustic statistics and sub-word information, into the 
proposed framework for the SDR task. Moreover, we also plan to 
evaluate the framework on other large-scale corpora as well as NLP-
related tasks. 
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Table 1. Retrieval results (in MAP) achieved by various retrieval 
systems. 

 TD SD 
 Long Short Long Short 
VSM 0.548 0.339 0.484 0.273 
CBOW 0.563 0.358 0.500 0.307 
SG 0.567 0.385 0.508 0.364 
GloVe 0.558 0.371 0.502 0.321 
DM 0.558 0.344 0.484 0.302 
EV 0.571 0.382 0.518 0.364 
Rocchio’s 0.577 0.385 0.526 0.389 
GPR 0.584 0.404 0.523 0.380 
GPR+Rocchio’s 0.589 0.404 0.527 0.389 

 
Table 2. Retrieval results (in MAP) of the proposed GPR framework 

with respect to the number of generated representations. 
 TD SD 

|𝑅𝑅�𝑄𝑄| Long Short Long Short 
1 0.573 0.386 0.509 0.370 
3 0.584 0.387 0.508 0.364 
5 0.576 0.404 0.523 0.363 

10 0.571 0.386 0.510 0.380 
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