
LEARNING MOTION DISFLUENCIES FOR AUTOMATIC SIGN LANGUAGE
SEGMENTATION

Iva Farag∗

Saarland University
Saarland Informatics Campus
66123 Saarbrücken, Germany

Heike Brock

Honda Research Institute Japan
8-1 Honcho, Wako-shi

Saitama 351-0188, Japan

ABSTRACT

We introduce a novel technique for the automatic detection of
word boundaries within continuous sentence expressions in
Japanese Sign Language from three-dimensional body joint
positions. First, the flow of signed sentence data within a
temporal neighborhood is determined utilizing the spatial cor-
relations between line segments of inter-joint pairs. Next, a
frame-wise binary random forest classifier is trained to dis-
tinguish word and non-word frame content based on the ex-
tracted spatio-temporal features. The output of the classifier
is used to propose an automatic word synthesis that achieves
reliable and accurate sentence segmentation with an average
frame-wise F1 score of 0.89. Evaluation with a baseline data
set furthermore shows that the proposed approach can easily
be adapted to distinguish between motion transitions and mo-
tion primitives for a coarse-action domain.

Index Terms— sign language understanding, temporal
segmentation, angular motion features, disfluency detection,
binary classification

1. INTRODUCTION

The development of systems that recognize utterances in
signed languages constitutes an important step for better in-
clusion of deaf or hard of hearing (DHH) individuals. How-
ever, current sign recognition systems are still far from being
applicable in real life scenarios. One of the main reasons
for this is the continuous character of sign utterances. Al-
though previous works report recognition accuracies of 90%
or higher on isolated signs or finger spelling [1, 2], simi-
lar high accuracies could not yet be obtained when using
continuous, full sentence data: as in spoken languages, an
expression’s flow is dependent on speed, content and per-
sonal style variations, and two lexical items might merge into
one movement without clear separation. Common features
of natural language such as a high number of vocabulary and
highly imbalanced word occurrence, as well as specialties of
the visual movement-based language representation further
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impede the learning of accurate and reliable classifiers and
recognition networks.

To date, best working systems utilize a combination of
deep image classifiers such as Convolutional Neural Net-
works (CNNs) with parallelized sequence modeling [3, 4].
These deep neural networks were trained directly on the
continuous sign data, leaving temporal dependencies of full
sentence expressions for the network to learn as is. However,
accuracy of such networks is largely dependent on the qual-
ity and amount of available training data, and most publicly
available data bases for sign language recognition cannot be
considered sufficiently large and balanced for meaningful
end-to-end learning. Therefore, we pursue a step-wise sen-
tence content recognition approach: first, a method should be
trained to automatically detect word boundaries and segment
the signed expression into its grammatically correct sub-parts,
which can then be classified by a neural network.

Given that prior temporal segmentation might reduce
overall system accuracy in case of imperfect segmenta-
tion [5], we aim to develop a robust segmentation method
that is dependent on as little variant parameters as possible.
Motivated by previous joint angle based feature descrip-
tors [6], we propose a new angular representation of skeletal
correlations that is descriptive for movements with respect to
differently-paced sub-motion parts. We then train a binary
random forest classifier which simply annotates every frame
of a given motion sequence as either word or non-word, and
subsequently obtains a valid sentence split proposal. This
strategy offers two advantages. First, using motion data on
a per-frame basis, we obtain a much larger number of avail-
able training data to learn an appropriate level of classifier
sensitivity. Second, frequencies of over- or underrepresented
corpus words cannot influence the overall accuracy. As a
proof of concept, we evaluate our method on two differ-
ent data set, one data set containing sentence expressions in
Japanese Sign Language (JSL) and one popular human activ-
ity recognition data set, and demonstrate that the method is
able to provide meaningful distinction between unspecified
motion transitions and the actual motion actions.
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2. REPRESENTATION AND SEGMENTATION OF
HUMAN ACTIONS

The spatial representation of human motion within its distinct
motion primitives is crucial for understanding and processing
motion sequences. Addressing the challenges of capturing
skeleton structures, researchers have moved from the simplis-
tic raw motion data [7, 8] to more complex skeleton repre-
sentations. Some of them are based on features computed
from joint body positions, either via using angular displace-
ment maps [9], angular joint displacement maps (JADMs) [6]
or kinematic-chain induced correlations [10]. Following their
success, we adopt a similar strategy and use 3D body posi-
tions to extract a compact data representation that captures the
characteristics of action primitives. For this we introduce a
novel feature computation based on the geometric relations of
line segments built from semantically meaningful joint pairs
within a defined term of movement.

Furthermore, current methods study the temporal evolu-
tion of the skeleton by exploring statistical relationships of
its joints over time by a covariance matrix [11], PCA-based
representation [12], alignment kernel computations [13, 14]
or self-similarity measures [15, 16]. Most of the approaches
however disregard transitional segments and blend them with
their neighboring action segments. And while [16] offers a
distinction between transition and coherent structures, it re-
lies on the assumption of repetitive or cyclic structures within
a motion activity, which is uncharacteristic for sign language
motion, in particular. In our method, we additionally apply
a kernel transformation over the skeleton features within a
given input sequence. Thus, we account for non-linear de-
pendencies over time. This allows us to obtain an accurate
temporal segmentation of pure activity sub-sequences that is
sensitive to the spatial as well as the velocity components of
the motion.

3. SIGN SEGMENTATOR

The main segmentation method is based on the transformation
of movement data into a descriptive and robust feature repre-
sentation. Afterwards, the encoded spatio-temporal informa-
tion of the skeleton motion is used to train a binary random
forest classifier and perform automatic word segmentation.

3.1. Feature Representation

Geometric Descriptors We utilize body joint positions rep-
resented in a global 3D coordinate system to compute line
segments between pairs of joints and consider their spatial re-
lationship to other line segments.

Assume a skeleton sequence of t frames, where each
frame consists of J1, . . . , Jn joint positions given by their 3D
coordinates, Jp = (px, py, pz). Overall we have n×(n−1)/2
unique joint pairs and their corresponding line segments.

J3 J4

J1

J2

dist

M12

M34J3 J4

J1

J2

−→n3 α1

Fig. 1. Geometric angular and distance features between the
line segments J1J2 and J3J4.

Let S be a set of domain-specific pairs of line segments.
Each segment pair s ∈ S is defined as a set of four joints
s = (J1, J2, J3, J4) that uniquely define the respective lines
(J1, J2) and (J3, J4). To capture their spatial relationship,
we derive angular and a distance features (Figure 1).

Without loss of generality, we consider (J3, J4) to be the
reference segment. First, we obtain the normal vector −→n3 to
the line J1J2 that passes through the point J3. Then, we de-
fine the corresponding angular feature as

cosα1 =
−→n3 ·
−−→
J3J4

||−→n3|| · ||
−−→
J3J4||

. (1)

Similarly, we compute the second angular feature cosα2

with respect to J1J2’s normal vector −→n4 that passes through
the point J4. Those angles encode the spatial relationship
between the line segments with respect to their rotational
displacement. To further account for translational motion,
we define the distance feature between two line segments to
be the Euclidean distance between their respective middle
points, dist = ||M12 −M34||. We concatenate the features
derived for each pair of line segments in S and get for each
frame i its corresponding geometric feature vector fi of size
3×|S|. For a given motion sequence of length t the geometric
feature matrix is F = [f1 . . . ft] ∈ R(3×|S|)×t.

Finally, in order to additionally incorporate the tempo-
ral information of the skeleton motion sequence, we consider
each frame in the context of the features of its neighboring
frames within a window of size wg . This comes down to
the following spatio-temporal representation for each frame
i: xGeo

i = [fi−wg , . . . fi, . . . fi+wg ].

Kernel Descriptors Due to the complexity of the task at
hand, we further consider the non-linear relationship between
the geometric skeletal features belonging to different frames
by applying a kernel transformation.

For a motion sequence of t frames and its corresponding
geometric feature matrix F, the frame-wise kernel matrix is
defined as,

K = φ(F)>φ(F) ∈ R t×t, (2)

where ki,j characterizes the similarity between the spatial
feature vectors fi and fj of frames i and j in terms of
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Fig. 2. Laplacian kernel matrix between the geometric feature
vectors with normalized distance measure for two example
sequences of JSL motion.

the kernel function φ(fi)
>φ(fj) (Figure 2). We observe a

distinct relationship between the geometric descriptors of
neighboring frames. Therefore, we additionally construct
the kernel feature vector for a given frame i and win-
dow size wk as the flattened upper triangular sub-kernel
xKer
i = triang[. . .Kuv . . . ], ∀u, v ∈ [i − wk, i + wk]. From

this definition we can derive further high-level understanding
of skeleton movement dependencies over time.

Finally, the complete feature descriptor for each frame i
of a motion data is given as xi = [xGeo

i , xKer
i ]. Those per-

frame feature vectors simultaneously capture spatial informa-
tion about the relative position of body joints with respect to
each other as well as their temporal evolution over the whole
motion sequence.

3.2. Random Forest Based Split Proposal

We exploit the proposed features for learning a random for-
est model. The training set is defined as D = {(x1, y1), . . . ,
(xn, yn)} with (x1, . . . , xn) the uniform-length feature vec-
tors for each frame of the motion sequence data as described
above and (y1, . . . , yn) the corresponding binary labels iden-
tifying frames belonging to an action primitive (sign word)
and transitional frames. For the given classification task, we
train a balanced binary random forest with bootstrapping. The
learned model is then used to classify frames from unseen
motion sequences. Consecutive frames belonging to the same
class are interpreted as an action segment (class 1) or an ac-
tion transition (class 0). As a final post-processing step, we
remove the singleton artifacts for a refined segmentation.

4. EXPERIMENTAL SETTINGS

We train and evaluate our method on two diverse data sets
built using optical motion capture systems, our own JSL sen-
tence data set (DJSLC) for implementation of a future JSL
translation system [17] and parts of the CMU motion cap-
ture data set as a common baseline comparison [18]. For both
data sets, we train a random forest with 300 decision trees and
window sizes wg = 2 and wk = 10. We apply a Laplacian

kernel transformation with γ = 1/#features for its better
performance on high dimensional data.

For the DJSLC, we use a feature vector of size 815 built
from geometric and kernel values of 41 domain-specific seg-
ment pairs between joint positions of the upper body (hip
to head) and finger joints. In particular, we focus on inter-
and intra-hand segment pairs as well as hand-body segments.
DJSLC contains 1432 sequences of 3 to 12 daily domain
words captured with a temporal resolution of 60Hz. We per-
form an 8-fold cross validation, meaning that in every fold
we use 1253 sentences for training and the remaining 179
sentences for testing so that in total every sentence is part of
a test set once. Within every test fold the ratio of class 0 and
class 1 frames was approximately 65:35.

For the CMU data set, we adapt our choice of line segment
pairs to the characteristics of the given motion. We focus
mainly on segments connecting high activity joints such as
wrists, knees, feet, chest and their dependency over time. In
total, we obtain 50 pairs of segments and a final feature vector
of size 960 for each input frame. From the CMU data set, we
consider sequences 1-8 performed by subject 86 as containing
distinct movements.Since our objective is to distinguish be-
tween high activity action motion and in-between transitions,
we further label actions such as walking and standing as tran-
sitional motion. We perform leave-one-out cross-validation
over all input samples with sampling rate of 30 Hz.

5. RESULTS AND ANALYSIS

We evaluate the quality of our temporal segmentation in terms
of correct binary detection of all class 1 frames and compare
it to current state-of-the art algorithms.

5.1. JSL Data

To evaluate the predictive abilities of our skeleton feature
vectors, we consider a random forest model trained on JADM
features as defined in [6] and a model trained only over
our proposed geometric features. We compare them to our
full classifier based on both geometric and kernel relation-
ships. We report the average performance over an 8-fold
cross-validation in Table 1. We observed that our proposed
geometric skeleton representation is more descriptive than
the JADM features in the context of this segmentation task.
Furthermore, the best F1 score is achieved by combining the
spatial features and their kernel transformation with strong
statistical significance (average p=10.41 in a chi-square based
McNemar test between RFGeo+Ker and RFGeo), confirming the
advantage of incorporating non-linear relationships.

We investigate the practical application of our method
by examining the exact word proposals in comparison to the
ground truth segmentation (Figure 3). In most cases, our
algorithm was able to correctly identify the position of words
within the sentences. In some cases however it splits com-
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Table 1. Analysis of the binary classification performance of
random forest classifiers trained with different skeleton fea-
tures on the DJSLC.

precision recall F1 accuracy

RFJADM 0.87 0.82 0.84 0.89
RFGeo 0.89 0.85 0.87 0.91
RFGeo+Ker 0.89 0.90 0.89 0.92

plex sign words into sub-movements or fails to detect fast
and short sign segments (bottom two sequences in Figure 3).
Such discrepancies could potentially be further refined based
on the confidence values provided by the classifier. Their
post-processing as well as impact on subsequent full sentence
classification should be investigated as a next step.

5.2. CMU Data

We examine the performance of our method on the general
full body motion of the CMU data set. We compare our strat-
egy to a baseline random forest model trained only over the
absolute positions of the skeleton joints as well as the Re-
gion Growing action partitioning proposed by [16]. We report
the statistical results of a strict frame-wise evaluation in Fig-
ure 4. Our segmentation technique consistently outperforms
the baseline and achieves F1 score rates similar to a current
state-of-the-art temporal segmentation algorithm.

Figure 5 shows the action primitives suggested by our
model and compares them to the Region Growing and the
ground truth annotation. We were able to detect sensitive tran-
sitions between separate motion segments, while sometimes
directly identifying their underlying substructures. However,
if motions flow into each other without visible transition, the
actions were merged together. The results obtained from the
CMU data set are a proof-of-concept and demonstrate the
practical application of the proposed method.

100 150 200 250 300 350
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RF

100 150 200 250 300 350 400
GT
RF

100 150 200 250 300 350 400
GT
RF

100 150 200 250 300 350 400 450
GT
RF

Fig. 3. Segmentation of Japanese sign language motion
sequences returned by our algorithm in comparison to the
ground truth.
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Fig. 4. F1 score of strict frame-wise classification of
sequences 1-8 for subject 86 obtained by our algorithm
(RFGeo+Ker), a simpler baseline version of it (RFAbs) and the
Region Growing (RGrow) segmentation by [16]).

6. CONCLUSION

We introduced a novel method for the segmentation of con-
tinuous motion data for application with continuous sentence
expressions in Japanese Sign Language. The method is based
on the composition of spatio-temporal angular and distance
features between domain-specific pairs of joint segments. A
binary random forest model was trained on the extracted fea-
tures for automatic word synthesis from motion sequences.
Strict frame-wise evaluation of the classifier reaches an aver-
age F1 score of 0.89 for a 8-fold cross-validation cycle. This
suggests that the proposed combination of statistical signal
processing and machine learning is able to reveal hidden char-
acteristics in the sign motion that can be retrieved as indica-
tors for data segmentation. The universal properties of our
segmentation strategy were also tested on a full-body human
motion data set popular for general-purpose activity recogni-
tion. Results show that the algorithm is able to distinguish be-
tween dynamic and static motion phases and reaches similar
segmentation accuracy as previous state-of-the-art methods.

Next, our method should be employed in a two-stage clas-
sifier for the given continuous sign motion data, promising to
provide opportunities for higher recognition accuracy in this
challenging setting. Additionally, it should be further applied
to other data sets in order to examine the quality of its perfor-
mance on different sign languages and data qualities.

200 400 600 800 1000
GT
RF

RGrow

500 1000 1500 2000
GT
RF

RGrow

Fig. 5. Ground truth segmentation for sequences 1 (top) and 2
(bottom) for subject 86 of the CMU data and the segmentation
by Region Growing (RGrow) proposed in [16].
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