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ABSTRACT

We propose spoken sentence embeddings which capture both
acoustic and linguistic content. While existing works op-
erate at the character, phoneme, or word level, our method
learns long-term dependencies by modeling speech at the sen-
tence level. Formulated as an audio-linguistic multitask learn-
ing problem, our encoder-decoder model simultaneously re-
constructs acoustic and natural language features from audio.
Our results show that spoken sentence embeddings outper-
form phoneme and word-level baselines on speech recogni-
tion and emotion recognition tasks. Ablation studies show
that our embeddings can better model high-level acoustic con-
cepts while retaining linguistic content. Overall, our work
illustrates the viability of generic, multi-modal sentence em-
beddings for spoken language understanding.

1. INTRODUCTION

During verbal communication, humans process multiple
words sequentially, often waiting for a full sentence to be
completed. Yet, many written and spoken language systems
depend on individual character and word-level representa-
tions either implicitly or explicitly. This lack of sentence-
level context can make it difficult to understand sentences
containing conjunctions [1], negations [2], and vocal pitch
variations [3]. In this work, we investigate embeddings in the
domain of spoken language processing and propose spoken
sentence embeddings, capable of modeling both acoustic and
linguistic content in a single latent code.

Machine representation of words dates back to ASCII.
This one-hot representation encodes each character using a
mixture of dummy or indicator variables. While this was
slowly extended to words, the large vocabulary size of lan-
guages made it difficult. Learned, or distributed, word vector
representations [4] replaced one-hot encodings. These word
vectors are able to capture semantic information including
context from neighboring words. Even today, the community
continues to build better contextual word embeddings such as
ELMo [5], ULMFit [6], and BERT [7]. Word, phoneme, and
grapheme embeddings like Speech2Vec [8] and Char2Wav
[9] have also been proposed for speceh, following techniques
from natural language understanding.

While word-level embeddings are promising, they are of-
ten insufficient for speech-related tasks for several reasons.
First, word and phoneme embeddings capture a narrow tem-
poral context, often a few hundred milliseconds at most. As
a result, these embeddings cannot capture long-term depen-
dencies required for higher-level reasoning (e.g., paragraph
or song-level understanding). Almost all of the systems for
speech recognition focus on the correctness of local context
(e.g., letters, words, and phonemes) rather than overall se-
mantics. Second, for speech recognition, an external language
model is often used to correct character and word-level pre-
dictions. This requires the addition of complex, multiple hy-
pothesis generation methods [10].

Sentence-level embeddings offer advantages over word
and character embeddings. A sentence-level embedding can
capture latent factors across words. This is directly useful for
higher-level audio tasks such as emotion recognition, prosody
modeling, and musical style analysis. Furthermore, most ex-
ternal language models operate at the sentence-level. By hav-
ing a single sentence-level embedding, the embedding can
capture both acoustic and linguistic content at longer contex-
tual window sizes – thus alleviating the need for an external
language model entirely, by learning the temporal structure.

Contributions. In this work, our contributions are two-
fold. First, we propose moving from phoneme, character, and
word-level representations to sentence-level understanding by
learning spoken sentence embeddings. Second, we design
this embedding to capture both linguistic and acoustic con-
tent in order to learn latent codes which can be applicable to
a variety of speech and language tasks. We verify the quality
of the embedding in our ablation studies, where we assess the
generality of sentence-level embeddings when used for auto-
matic speech recognition and emotion classification. We be-
lieve this work will inspire future work in speech processing,
semantic understanding, and multi-modal transfer learning.

2. METHOD

Our method allows us to learn spoken sentence embeddings
that capture both acoustic and linguistic content. In this sec-
tion, we discuss (i) how we handle long sequences with a tem-
poral convolutional network [11] and (ii) how to learn audio-
linguistic content under a multitask learning framework [12].
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2.1. Temporal Convolutional Network (TCN)

Our goal is to learn a spoken sentence embedding, which can
be used for a variety of speech tasks. Recurrent models are
often the default starting point for sequence modeling tasks
[11]. For most applications, the state-of-the-art approach to
start with is very often a recurrent model. This is evident
in machine translation [13, 14], automatic speech recognition
[15, 16, 17], and speech synthesis tasks [18, 19, 9].

However, recurrent models such as recurrent neural net-
works (RNNs) are notoriously difficult to train [20]. For
years, machine learning researchers have tried to make RNNs
easier to train through novel training strategies [21] and ar-
chitectures [22]. In [11], the authors show that fully convolu-
tional networks can outperform recurrent networks, without
the training complexities [11]. In addition, they can better
capture long term dependencies [23] required for such tasks.
Motivated by these findings, in this work, we opt for a fully
convolutional sequence model (Figure 1). Similar to WaveNet
[23], we use a temporal convolutional network (TCN) [11].
While we use the TCN in this work, any causal model will
suffice (e.g., Transformer [24]).

Causal Convolutions. To begin, we introduce some
quick notation. The sequence modeling task is defined as
follows. Given an input sequence x of length T , we have
x = x1, ..., xT , where each xt is an observation for timestep
t. Suppose we wish to make a prediction yt at each timestep,
then we have y = y1, ..., yT . The causal constraint states
that when predicting yt, it should depend only on past ob-
servations x<t and not future observations. For example, a
bidirectional RNN does not satisfy this constraint.

Dilated Convolutions. Standard convolutions have a
fixed filter size and thus have a fixed temporal understanding.
If our goal is to learn sentence embeddings, we need filters
capable of modeling longer temporal windows – ideally mod-
eling the entire sentence. Following the work of [23, 11],
we employ dilated convolutions that enable an exponentially
large temporal context window at different layers of the TCN.
For an input sequence x = x1, ..., xT ∈ RT of length T and a
filter f : {0, ..., k− 1} → R for some filter size k, the dilated
convolution operation F on element s of the sequence is:

F (s) = (x~d f)(s) =

k−1∑
i=0

f(i) · x<(T−di) (1)

where d is the dilation factor and ~ denotes the convolution
operator. When d = 1, a dilated convolution reduces to a
standard convolution. Figure 1 shows a TCN with dilation
factor d = 2 and kernel size k = 2. The TCN allows us to
model entire sentences, typically with hundreds to thousands
of timesteps, with a single encoder. This encoder produces
a fixed-size embedding vector which contains both audio and
linguistic information from the input. We explain this process
more in the next section.
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Fig. 1: Audio-linguistic embedding for spoken sentences.
Formulated as a multitask learning problem, our method
learns a multi-modal spoken sentence embeddings by recon-
structing linguistic and acoustic features during training.

2.2. Multitask Learning of Acoustics and Linguistics

In the previous section, we explained how to convert a
variable-length spoken sentence into a single, fixed-length
vector using a TCN. We now discuss how to encode both
acoustic and linguistic content into this vector using multi-
task learning.

A task is a specific prediction problem (e.g., speech recog-
nition, emotion recognition, speaker verification). Multitask
learning attempts to train a model to simultaneously perform
multiple tasks. The simplest method is to combine the task-
specific loss functions Lk into a single loss criterion LTotal =∑K

k=1 λkLk, where λk is an arbitrary task-weighting coeffi-
cient, where k refers to a task index. We use hard parameter
sharing [25] as the TCN encoder is shared for both the acous-
tic and linguistic decoders. The acoustic target is the original
mel-spectrogram input, whereas the linguistic target is a text
transcription.

3. EXPERIMENTS

Our experimental procedure consists of two parts. First, we
learn individual phoneme, word, and sentence embeddings
from TIMIT and LibriSpeech. These include previously pub-
lished baselines and our proposed spoken sentence embed-
dings. Second, we evaluate these embeddings on automatic
speech recognition and emotion recognition.

3.1. Configuration

Datasets. We train our model on the LibriSpeech dataset
[29]. The training set consists of 460 hours of 16 kHz English
speech. For speech recognition, we use both LibriSpeech
and the TIMIT dataset [30] and report results on the test set.
For emotion recognition, we use the Ryerson Audio-Visual
Database of Emotional Speech and Song (RAVDESS) dataset
[31]. It consists of 24 speakers demonstrating 7 emotions.
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Table 1: Comparison of phoneme, word, and sentence embeddings. Sentence embeddings are our proposed method.
Phoneme and word error rates are denoted as PER and WER, respectively. All numbers denote percentages. Rows 5 and 6
do not have fusion because the model produces a sentence embedding. Plus/minus denotes 95% confidence interval.

Speech Recognition Emotion Recognition
# Embedding Level Fusion Method TIMIT PER LibriSpeech WER Accuracy Precision Recall

1 Phoneme Average [26] 50.4± 6.0 74.8± 9.6 20.8± 5.4 19.5± 1.8 19.9± 1.9
2 Phoneme Deep Avg Network [27] 50.8± 6.5 70.5± 9.3 21.1± 5.0 17.5± 6.0 21.2± 5.0
3 Word [4, 8] Average [26] 49.6± 7.0 30.8± 6.0 21.9± 3.0 20.3± 2.3 21.5± 4.0
4 Word [4, 8] Deep Avg Network [27] 51.2 ± 5.8 18.5± 3.0 21.2± 4.3 23.0± 6.6 23.6± 3.7

5 Sentence - RNN (LSTM) [28] 29.6 ± 4.0 10.8 ± 1.8 25.7± 5.5 21.0± 5.0 24.0± 6.0
6 Sentence - Fully Convolutional [11] 30.1± 4.5 13.5± 2.0 29.2 ± 3.1 28.8 ± 5.4 29.2 ± 3.1

Because no official train-test split is provided, results are re-
ported using four-fold cross-validation (75% train, 25% test).
The input representation used in all methods are log-mel spec-
trograms with 80 mel filters, with audio sampled at 16kHz.

Evaluation Metrics. Speech recognition performance
is evaluated using the phoneme (PER) and word error rate
(WER). Emotion recognition, a multi-class classification
problem, is evaluated using accuracy, precision, and recall.

3.2. Baselines

We now discuss the baselines we compare our method
against. To compute a sentence-level embedding, one must
decide (i) which intermediate embedding to use and (ii) how
to fuse them into a single, sentence-level embedding.

3.2.1. Intermediate Embedding

We select two baseline embeddings for learning intermediate
speech representations. The embeddings were selected due to
their ease of use and applicability to language tasks.

1. Speech2Vec [8]. The Speech2Vec method learns an em-
bedding for spoken words. Word alignments (i.e., seg-
mentations) are required, but the method can be trained in
an unsupervised manner. Different utterances of the same
word will have different embeddings. This is the same as
Word2Vec [4], but instead applied to spoken language.

2. Phoneme2Vec. This is the same as Speech2Vec but applied
to phonemes. Each utterance of a phoneme is encoded as
a single embedding. This is useful for fine-grained tasks.

We train Speech2Vec and Phoneme2Vec on LibriSpeech, sim-
ilar to the procedure in [8]. The word and phoneme align-
ments are computed using a Gaussian mixture model [32].

3.2.2. Fusion Method

For these baselines, once we have embeddings for each word
or phoneme, we must combine them into a single sentence
embedding. We evaluate two fusion methods:

1. Uniform Average [26]. The intermediate embeddings
are converted to a sentence embedding by computing an
element-wise sum of the intermediate embeddings at each
word or phoneme position [26] and dividing by the number
of words in the sentence. This is a uniform average.

2. Deep Averaging Network (DAN) [27]. First, a uniform
average is computed over the intermediate embeddings.
Then, the averaged vector is fed into a deep neural network
to produce the final sentence embedding. This neural net-
work is trained with the encoder, using the same multitask
loss objective from Section 2.2.

For DAN, a deep neural network converts the simple aver-
age into a sentence embedding. This neural network is the
encoder component of a larger encoder-decoder model [13]
which is trained offline. This encoder-decoder model is for-
mulated as a multitask learning problem with two decoders:
one for acoustic and one for semantic (or linguistic) content.

4. RESULTS

4.1. Speech Processing Tasks

After training our model on LibriSpeech, we take the en-
coder and use that to generate spoken sentence embeddings
on TIMIT [30] and RAVDESS [31]. The weights of encoder
are fixed after training and then is only used to extract em-
beddings. We now have sentence embeddings for TIMIT and
RAVDESS and can proceed to train a simple RNN decoder
for automatic speech recognition and a SVM classifier for
emotion recognition. Table 1 shows results for both tasks.

Sentence-level embeddings outperform phoneme and
word embeddings on both tasks. This is true for both the
RNN and our fully convolutional TCN model. Phoneme-level
embeddings perform poorly for speech recognition (WER in
excess of 70%) in contrast to the embedding learned by our
method. Comparing the fusion methods, the deep averaging
network [27] did not significantly outperform uniform aver-
age. The uniformly averaged vector (i.e., input) was already
the information bottleneck.
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Fig. 2: Visualization of how our method can separate emotions. Each point denotes an audio clip. The x and y axes denote
T-SNE projection axes [33]. First, the model was trained on LibriSpeech for speech recognition. Second, the model was used
as a fixed feature extractor on the RAVDESS emotion dataset. Finally, the features were plotted and colored by label.
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Fig. 3: Effect of sequence length on TIMIT. (Top) Dis-
tribution of sentence lengths. (Bottom) Speech recognition
phoneme error rate for different embeddings.

4.2. Ablation Studies

Visualization of the Embedding Space. For this experiment,
we took our pre-trained spoken sentence encoder, trained on
LibriSpeech, and extracted sentence embeddings for each
RAVDESS [31] audio clip. We then visualized the embed-
dings for different emotions in Figure 2. Note that our model
never saw a training example from RAVDESS. Without being
trained on emotion recognition, our sentence embedding can
still cluster emotions.

Sequence Length vs Performance. Figure 3 shows the
effect of sequence length on speech recognition performance.
In general, as the sentence becomes longer, the performance
of the simple embeddings demonstrate lower performance.
Our method also demonstrates such a pattern (albeit, to a
lesser extent), because longer sentences have more content
to “fit” into the fixed-size embedding. This problem could be
remedied with variable-length embeddings, which grow lin-
early in size with the length of the sentence.

5. DISCUSSION

Related Work. The concept of sentence representations (and
longer [34]) has been explored in both the natural and spo-
ken language processing communities. On the natural lan-
guage side, skip-thought vectors [35] and paraphrastic sen-
tence embeddings [36] have been proposed. On the speech
side, whole sentence maximum entropy models [37], whole
sentence models [38], and time delay networks [39] have been
proposed. Closely related to our work is Speech2Vec [8],
which was used in our experiments. While Speech2Vec is
designed for words, it could be extended to sentences as well.

Most similar to our work is the Universal Sentence En-
coder (USE) from natural language processing [26]. They
propose two sentence encoders. Each encoder accepts a sen-
tence and produces a single vector. The first encoder is based
on attention [24]. The second encoder averages individual
word embeddings and feeds the result into a neural network
[27]. In contrast to USE, our method does not model interme-
diate word-level features but instead directly learns a sentence
embedding. We believe this can better model long-term con-
text as inter-word relationships are not lost through averaging.

Conclusion & Future Work. In this work, we presented
a method for learning spoken sentence embeddings which
capture both acoustic and linguistic content. We formulated
the problem as a multi-task learning problem to reconstruct
both acoustic and linguistic information. Our results show
that our spoken sentence embeddings can be used for emotion
recognition and speech recognition. Future work can focus on
learning “universal” embeddings for spoken language. There
has been promising work on the natural language side [26], of
which speech and audio can provide additional dimensions.
Similar to document-level embeddings for text [34], further
audio research could explore larger temporal context sizes for
full-length songs and multi-sentence recordings. Overall, our
work illustrates the viability of generic, multi-modal sentence
embeddings for spoken language understanding.
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