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ABSTRACT

Despite the vast success neural networks have achieved in dif-
ferent application domains, they have been proven to be vul-
nerable to adversarial perturbations (small changes in the in-
put), which lead them to produce the wrong output. In this
paper, we propose a novel method, based on gradient pro-
jection, for generating universal adversarial perturbations for
text; namely sequence of words that can be added to any in-
put in order to fool the classifier with high probability. We
observed that text classifiers are quite vulnerable to such per-
turbations: inserting even a single adversarial word to the be-
ginning of every input sequence can drop the accuracy from
93% to 50%.

Index Terms— neural network, universal adversarial per-
turbation, gradient projection, text classifier

1. INTRODUCTION

In the recent years, neural networks have been successfully
applied in many domains such as vision [1, 2, 3], speech
[4, 5, 6], and text [7, 8, 9]. However, it has been shown that
neural networks are vulnerable to small changes in the input,
the so-called adversarial perturbations, which cause them to
produce the wrong output [10]. In real-world applications, the
robustness of networks to such perturbations must be taken
into consideration in order to guarantee their worst-case per-
formance. In the last few years, many works have focused on
crafting adversarial perturbations for image data, and defend-
ing and analyzing the robustness of deep networks against
such perturbations [11, 12, 13, 14]. However, only a few stud-
ies have been done on textual data. One of the key differences
between text and image is the discrete nature of words and
characters constructing the text which requires discrete opti-
mization methods in order to craft adversarial perturbations
for them.

Unlike image settings, where we can use the gradient of
the output to find adversarial perturbations, the gradient of
the output with respect to words or characters is not defined.
Nevertheless, one can compute the gradient with respect to
the embedding of words or characters as they lie in a Eu-
clidean space. Thus, Papernot et al. [15] proposed a method
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for fooling a text classifier by replacing a randomly chosen
word in the sequence with the nearest word in the direction
of the gradient with respect to the embedding. This method
is based on the Fast Gradient Sign Method [12], which finds
the perturbation by computing the sign of the gradient with
respect to the input. In [16, 17, 18], the gradient of the loss
with respect to the inputs is used for discovering the critical
words or characters in each input sample, and then perturbing
them. Yang et al. [19] proposed a probabilistic framework for
maximizing the success probability of an adversarial attack.
Their framework consists of two steps; namely finding first
the £ most important word positions and then selecting the
best words located in those positions to maximize the proba-
bility of the adversary to be successful. Alzantot et al. [20]
proposed a method for altering the words using the seman-
tically similar words and a language model for selecting the
most natural words in that context. Jia et al. [21], proposed
a method for crafting an adversarial sentence to be concate-
nated to the original text in order to fool a reading compre-
hension network. They also introduced a model-independent
adversary which adds a random valid sentence to all the input
paragraphs.

Moosavi-Dezfooli et al. [22] showed the existence of
input-independent perturbations, called Universal Adver-
sarial Perturbations (UAP), for image classification tasks.
As opposed to adversarial perturbations, UAPs are data-
independent and can be added to any input in order to fool
the classifier with high confidence. Similarly, in this paper,
we propose a novel method to generate universal adversarial
perturbations for textual data in that they can be inserted into
any input sequence in order to fool a given text classification
model. Unlike previous works on attacking text classifiers,
our attack does not require to separately optimize the pertur-
bation for each input. Instead we seek for perturbations that
can be applied on any input sequence (from the correspond-
ing domain). The proposed method uses an iterative projected
gradient-based approach to find a sequence of words that must
be inserted into the input sequences. We evaluate our method
on different settings including three RNN-based architectures
and two text classification datasets, and show that all archi-
tectures are quite vulnerable to such a simple perturbation
regime. To the best of our knowledge, we are the first to
introduce universal adversarial attacks on text classifiers.
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2. PROBLEM STATEMENT

In this section, we are going to formalize the problem of find-
ing the universal adversarial examples for a text classifier in
cases of both targeted and non-targeted attacks. A targeted
attack is a kind of attack in which we aim to fool a classifier
to classify an adversarial example into a predetermined tar-
get class rather than its true class, whereas, in a non-targeted
attack the objective is simply to change the correct class. At
first, we generalize the definition of an adversarial example to
the text domain and then combine it with the universal attacks
to formulate our problem.

2.1. Adversarial examples for text

Consider a classifier f which maps the input z € X to its
class label | € L. We call 2’ an adversarial example crafted
from z if f(x) # f(a'), while  and 2’ are perceived as
coming from the same class by a human observer. Let x =
Z1%3 . .. T, be the input sequence of f which is an ordered list
of words or characters constructing textual data. We can now
craft an adversarial sequence ' = x5 ...z, by inserting,
altering or removing some words and characters from x.

2.2. Universal adversarial examples for text

In the universal adversarial attack regime [22], we seek for a
single perturbation that can be added to each of the input sam-
ples and fool a given classifier with high probability. In this
work, we show the existence of such universal perturbations
for text classification tasks. In particular, we want to find a
single sequence of words w that, by concatenation with any
input sample coming from data distribution P(X), fools the
classifier with high probability.

Consider a text classifier with input « and output I. Fur-
thermore, let w = wiws . .. w,, be the adversarial sequence.
We construct adversarial input as follows, where & is the in-
sertion operator and k denotes the location of insertion rang-
ing from 0 to n:

!
T=whr T =21... T, W1 ... Wi Thot1 - - - Ty (D)

In order to design w, we maximize the classifier’s loss
function with respect to the true class for the non-targeted at-
tack. We aim to distract the classifier to any other class than
the true one. Consider loss(l, f(z)) as the cost of classify-
ing the input z into the class f(x) (that is the output of the
classifier) instead of the correct label [, we can design w as:

W = argmax E,._px)[loss(l, f(z'))] @)

If we rather want to perform a targeted attack where we in-
tend to classify sample 2’ to a specified class ', the following
optimization problem should be solved:

W = argmin B, p(x)[loss(l’, f(x"))] &)

Since we are optimizing the expected loss with respect to the
data distribution, the resulting sequence w would ideally be
universal; i.e., when  is concatenated to any sample coming
from P(X) the loss is maximized/minimized on average.

Embedding Space (&)
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X

Fig. 1. An illustration of how our algorithm projects the gradient
in the embedding space. At first, the gradient is applied to the cur-
rent word vector (e) and then among word vectors in the vocabulary
(orange balls), the nearest one (e’) is chosen to be projected to.

3. ADVERSARIAL ATTACK ALGORITHM

In this section, we describe our method for solving the opti-
mization problems in Eq. (2) and Eq. (3). Due to the discrete
nature of textual data, we are facing a discrete optimization
problem. Therefore, the methods used for attacking image
classifiers cannot be directly applied here.

In order to represent words in a computational space, we
have to encode them into vectors. We call the vector space
of encoded words the embedding space £. Consider V' as
our vocabulary, which is a finite set of words, and £y as the
discrete subspace of £ where the words in V' are embedded.
Also, consider w as a word vector in the embedding space
&. We now propose to use gradient descent/ascent, depending
on whether the attack is targeted or non-targeted, to solve the
optimization problems in Eq. (2) and Eq. (3).

In each iteration of the gradient descent/ascent, the em-
bedding vectors corresponding to the words that we want to
add to the sequence are first updated in the continuous embed-
ding space using the gradient vector. Formally, for the word
w; in w, we compute the descent/ascent direction for input
sample x where 2’ = w ®y 2, as 13 = Vemp(w,)loss(l, f(z')),
where emb(w;) € £ is the corresponding embedding of w;
and [ is the correct/target label. Then the resulting vectors are
projected to the vocabulary vectors in that space (£y). This
projection is performed for each word vector independently
and, to the nearest vector in £y in terms of cosine similarity
(as illustrated in Fig. 1). Therefore,

w; = argmin cos(emb(w),), (emb(w;) + ar;)) (4
wieV

In order to maximize the loss function in a non-targeted attack
(Eq. (2)), we have to move in the direction of gradient (gra-
dient ascent) in which the ratio « is positive. In contrary, for
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a targeted attack (Eq. (3)), we set « to be negative in order to
move in the opposite direction of gradient (gradient descent)
for minimizing the loss function. Our proposed method is
summarized in Algorithm 1. It can also be applied to batches
of data with small modifications.

Algorithm 1 Computation of universal word vectors
Input: data samples: X, learning rate: «, loss function:
loss(.,.), location of insertion: k
Output: universal adversarial word vectors w = wy ... Wy,
1: Initialize w < random sequence of words
2: loop
3: for each data sample z € X do

4: T =wdx
5: for each word w; € w do
6: compute Vemy(w,)loss(, f(2'))
7: 2i <= emb(w;) + &V emp(w,;)loss(l, f(z')
8: w} «— argmin cos(emb(wy}), z;)
wieV
9: w; — w}
10 end for
11: end for
12: end loop

4. EXPERIMENTAL RESULTS

In this section, we explain the setup and the evaluation of our
method on different settings.

4.1. Setup

Datasets. We evaluate our methods on two datasets for the
task of text classification.

e AG news dataset: The default dataset used in our ex-
periments is the version provided by [7] in which 3000
samples from 4 common news categories (World, Busi-
ness, Sports, Sci/Tech) are gathered. There are also
1900 test samples for each class.

e Stanford Sentiment Treebank: This dataset [23] con-
tains about 11000 labeled sentences for the task of sen-
timent analysis. The sentences have been divided into
five classes of very negative (1) to very positive (5).

Architectures. RNN-based architectures using Long Short-
Term Memory (LSTM) cells [24] are used as the text clas-
sifiers. An embedding layer is also applied to the inputs of
the network in order to map them into the continuous space.
We used the pre-trained embedding vectors provided by [25].
The investigated architectures are as follows:

o LSTM: The default architecture used is a vanilla RNN
with LSTM cells. The last hidden state is fed to a fully
connected layer to produce the results.

@ Stanford Sentiment Treebank
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Fig. 2. Accuracy of LSTM trained on the Sentiment Stanford Tree-
bank, when words are inserted at the beginning of inputs.

e bi-LSTM: We also tried a bidirectional LSTM [26] in
which the last hidden states of both directions were
concatenated and fed to the next layer.

e mean-LSTM: We used a mean layer over all the LSTM
cells’ outputs and then fed them to the next layer.

Hyper-parameters. All the LSTM cells have 512 hidden
units. We also find out that the learning rate 1 is an appropri-
ate value for moving between word vectors of our vocabulary
in the embedding space. The Adam optimizer [27] is utilized
for optimizing the loss function.

4.2. Performance

Non-targeted attacks. In order to perform this attack we
solve the optimization problem in Eq. (2). Table 1 shows
the results of attacking LSTM for classifying news articles by
concatenating adversarial words to the beginning of the in-
puts. Interestingly, there exists a dominant class in all the ex-
periments which is the Sci/Tech category. This attack results
in the minimum possible accuracy to be achieved (i.e. 25%).
As the number of adversarial words increases, the model’s
accuracy drops, since the number of words directly affect the
classifier’s decision. According to these experiments, when
even one word is inserted to the beginning of any sequence
adversarially, it can drop the model’s accuracy to 50%.

We performed non-targeted attack on three different ar-
chitectures trained on AG news dataset and concatenated the
adversarial words to the beginning of each input sample. The
results are shown in Table 2. All architectures seem to be vul-
nerable to our attack, which hints that our attack is a threat for
RNN-based architectures in general.

In order to ensure the effectiveness of our method, we
also tried it on another dataset (Stanford Sentiment Treebank)
while inserting the adversarial words to the beginning of the
sequences on the LSTM model. As shown in Fig. 2, this
dataset is also vulnerable to our attack, and the minimum pos-
sible accuracy is almost achieved (i.e. 20%). Similar to AG
news dataset, inserting one universal word highly distracts the
classifier.

In addition, the effect of changing the location of inserted
words is shown in Fig. 3. The attack is performed on LSTM
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Table 1. The results of performing non-targeted attack on AG news dataset where the adversarial words are inserted at the beginning of the
input samples. As the number of words in the perturbation increases, the accuracy drops.

number of words | accuracy | dominant class | universal adversarial words
10 25.01 Sci/Tech Global, Phenology, general-assignment, single-topic, medulloblastoma,
exobiology, tech, molten, astrobiology, modularized
5 25.84 Sci/Tech three-station, succumbs, supercookies, cypherpunk, virtualisation
2 30.05 Sci/Tech stellarators, non-OS
1 49.72 Sci/Tech abandonware

Table 2. Accuracy for non-targeted attacks on different architec-

tures, where m adversarial words are inserted to the beginning of

the inputs on AG news dataset.

m 0 1 3 5
LSTM 9342 | 49.72 | 2535 | 25.84
mean-LSTM | 92.80 | 87.92 | 25.23 | 25.00
bi-LSTM 93.23 | 89.07 | 28.53 | 25.01
os R

1
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N

Accuracy (%)
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Fig. 3. Effect of changing the location of adversarial words on the
accuracy of LSTM classifier on AG news dataset.

model trained on AG news dataset. The model is fooled eas-
ier when the words are inserted at the beginning of the in-
put sequence. The model seems to give more importance
to the beginning of the input sequence. In order to investi-
gate it further, we performed the same experiment for a bi-
directional LSTM model (Table. 3 which is agnostic to the
direction of the input sequence. It can be seen that the bi-
directional LSTM exhibits a more consistent behavior.

Targeted attacks. We try to optimize Eq. (3) in order to
perform these type of attacks. We performed targeted attacks
on LSTM model trained on AG news dataset, where the ad-
versarial words are inserted at the beginning of the sequences.
Fig. 4 shows that our method can be successfully applied for
these kind of attacks. Based on the results, it seems some

Table 3. Accuracy vs location of insertion of m adversarial words
for bi-LSTM trained on AG news dataset.

m 1 3 5
beginning | 89.07 | 28.53 | 25.01
end 81.92 | 34.36 | 25.69

@ World A Sport Business @ Sci/Tect

Accuracy (%)

number of adversarial words

Fig. 4. Accuracy for targeted attacks on the AG news dataset, while
adversarial words are added at the beginning of inputs.

classes are more powerful in fooling the model, which is prob-
ably caused by special words used in them. For example,
Sci/Tech category has many technical words, which are rarely
used in other categories and therefore, by inserting them in
any sentence the classifier gets fooled with high probability.

In order to show that our attacks are effective, we inserted
randomly selected words from the vocabulary to the begin-
ning of the sequences, similarly to what Jia et al. [21] pro-
posed for reading comprehension systems. We found that our
models are almost robust to such random perturbations and
the accuracy drop is negligible; in particular, 5 random words
cause a drop of only 5% in the accuracy.

5. CONCLUSION

In this paper, we introduced a new type of attack for text clas-
sifiers, which is universal. We proposed a method based on
gradient projection to craft data-independent adversarial se-
quences, which fool the classifier with high probability when
added to any input sample. We evaluated our attack on differ-
ent settings and our results show that, even in such a simple
regime the classifiers are quite vulnerable such that inserting
one word can drop the accuracy from 93% to 50%.

The problem of robustness of text classifiers is not well-
studied, due to the discrete nature of textual data which intro-
duces more challenges than for image data that are commonly
studied. There are still many open questions left in this con-
text, e.g., how attention might contribute to the robustness of
a model, which could be investigated in future work.
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