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ABSTRACT

Most of the parameters in large vocabulary models are used
in embedding layer to map categorical features to vectors and
in softmax layer for classification weights. This is a bot-
tleneck in memory constraint on-device training applications
like federated learning and on-device inference applications
like automatic speech recognition (ASR). One way of com-
pressing the embedding and softmax layers is to substitute
larger units such as words with smaller sub-units such as char-
acters. However, often the sub-unit models perform poorly
compared to the larger unit models. We propose WEST, an al-
gorithm for encoding categorical features and output classes
with a sequence of random or domain dependent sub-units
and demonstrate that this transduction can lead to significant
compression without compromising performance.

1. INTRODUCTION

A standard way of representing categorical features or classes
as continuous features is to use embedding look-ups e.g.,
word-to-vector representation [1]. The corresponding matrix
which contains one embedding per row is called embedding
matrix and its size scales with the number of categorical fea-
tures (or output classes) and the embedding dimension. For
the input layer (or embedding layer), the embedding matrix
stores the representation for categorical features while for
the output layer (or softmax layer), it stores the classification
weights corresponding to each output class.

For large vocabulary tasks, embedding layers might not
even fit within the memory capacity of a single accelerated
computation unit like Graphical Processing Unit (GPU) [2, 3].
The situation is even worse when using these models for on-
device training such as federated learning [4, 5] or on-device
inference such as ASR on the phone [6] where there is also
communication bandwidth constraint between server, device
and CPU, accelerator respectively. Furthermore, these models
inherently suffer from unbalanced topology since many core
layers like recurrent layers are allocated a small percentage
of the total number of parameters; for Penn TreeBank (PTB)
[7, 8] or YouTube language model [2], the embedding and
softmax layers contain nine times more parameters than the
recurrent layers. Finally, due to data sparsity, there might
not be enough training examples per embedding parameter,
particularly for the infrequent features. The techniques to ad-
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dress the above challenges fall under a wide category of the
compression algorithms.

The compression algorithms are either multi-stage or
single-stage. In multi-stage compression techniques, a larger
model is first trained and then embedding or softmax lay-
ers are compressed via some compression algorithm. This
includes scalar quantization [9, 10, 11, 12, 13], vector quanti-
zation [14], product quantization [15], combination of vector
and product quantization [2], Huffman coding [16], and low
rank approximation [17]. These techniques do not optimize
the same objective function as the neural network training ob-
jective function, thus often require another stage of retraining
of the uncompressed model parameters. Alternatively, single-
stage approaches impose a structure on the parameter space
apriori of training and directly optimize the smaller model.
The most common single stage compression technique for
embedding layer is to use hashing [18], where the input vo-
cabulary is hashed to a smaller vocabulary. The hashing
mechanism is not one-to-one and is lossy. Another common
single-stage compression technique that also addresses data
sparsity is to use sub-word units like word-pieces or charac-
ters. While these methods naturally lead to high compression
rate, there is still a gap between their performance with that
of larger unit models. This paper tries to shed light on the
modeling performance gap between using smaller and larger
units.

2. WEST: WORD ENCODED SEQUENCE
TRANSDUCERS

We hypothesize that the reason for the performance difference
between larger unit and smaller sub-unit models is the way
smaller unit models are structured. Consider the example of
language models in Figure 1. The main difference between
word model and character model is the cycle that these mod-
els operate on. In the word model, input word is fed to pre-
dict the next word with word level cycle. The sub-unit models
perform on sub-unit cycle which is smaller than word. Hence,
the recurrent units need to remember longer sub-unit contexts.
Furthermore, since these models are normalized on sub-units,
they assign probabilities to character sequences that are not
in the vocabulary. = We propose Word Encoded Sequence
Transducers (WEST) model which performs over larger units
which are internally represented via smaller sub-units, which
can be language dependent (like characters) or random. Next,
we formally define WEST model, its compoenents and finally
its probabilistic interpretation.
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Fig. 1. Different recurrent neural network language models (RNN LM) of sentence ‘West world’. (a) In the word model, the input word
is fed to predict the next word. (b) In character model, the input and output operate on character level. (c, d) In WEST, while the word is
represented by smaller sub-units (language dependent or random), the model still operates on larger units i.e., word in this example.

2.1. Definition

WEST is a single-stage compression technique that com-
presses the embedding and softmax layers from the beginning
of the training by factoring them as a product of a structured
sparse matrix and a structured dense matrix. Let V' be the
vocabulary size i.e., the number of categorical features or
number of output classes and d be the embedding dimension.
Then embedding and softmax matrices are of size V' x d.
Let E denote softmax or embedding matrix. We propose to
factorize E as
E=Cx E°,

where C' is a sparse structured matrix of size V' x n - k such
that each row of C is concatenation of n weighted one hot
vectors of length k and E° is a structured dense matrix of size
n-kxd.

2.2. Structured sparse matrix

Let ¢ : [1,V] — U;<n[1, k] be a mapping from the vocabu-
lary to the set of sequences of length at most n, where each
entry ranges from 1 to k. We refer to n as the code length and
k as the alphabet size. Let ¢;(w) be the i™ entry of the code
for word w ! . Given such a codebook ¢, we construct a sparse
matrix C of size V' x n - k as follows. For i < n and j < k,

Cw,(i—l).k+j 7é 0 if and only if Cl(w) = _j

Furthermore, we define A, ; to be the weight corresponding
to the entry corresponding to ¢;(w). We differentiate be-
tween two types of sparse code books, the weighted sparse
matrix where the non-zero entries can take any value and the
unweighted sparse matrix where the non-zero entries are re-
stricted to be one, i.e., A, ; = 1 Vw, Vi. To store the code-
book (the sparse matrix entries indices), V' - n - [log, k] bits
are needed. This can also be prohibitive in many applica-
tions. Hence, we propose to use sparse codebooks that can be
stored succinctly with fewer than V' - n additional parameters
e.g., language codes and random codes.

Language coding: Let F' be a collection of sub-units such
as characters or word-pieces [19] and let w = w1, wa, . .. Wy

!In the rest of the paper, we use “word” for categorical features and output
classes as our main application is language models.
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where each w; € F and n’ < n. If F(w;) be the index of w;
in I, then
c(w) = F(wy), F(wa), ..., F(wy,).

where F'(j >= n’) = |F| is the padding symbol. For exam-
ple, if the set of words are {i, it, he, she, you, they}, and sub-
units are {1, t, he, s, you, y}, then c(she) is (4, 3). The advan-
tage of the language codebook is that the word-to-character
mapping is typically stored along with the network and hence
does not require any additional space.

Random coding: Let Rand (k,n) be a random map where
each word is mapped to a random sequence of length n
with integeres less than alphabet size k such that no two
words have the same code. The resulting codebook is
uniquely decodable by design. Furthermore, for any two
words wj,we, the probability of collision at any index is
:Prob (¢;(w1) = ¢;(we)) = 1/k, for i < n. Note that for
alphabet size k, this is the minimum possibility of collision
for any algorithm. The advantage of the random codebook
is that it can be generated on-the-fly, given a seed. Hence,
storing random codebook needs just V' parameters.

2.3. Structured dense matrix

The structured dense matrices has been investigated in the lit-
erature with the aim of reducing computational complexity of
matrix-vector multiplication and memory consumption [20].
Here we only consider two types of such matrices, block-
diagonal and band matrices.

Block-diagonal structure [21]: Let E’s be the sub-unit em-
bedding matrices of size k x d/n, then E° is a block-diagonal
matrix with E’s as the diagonal entries i.e.,

c _ %
E(Fl)-kﬂ/,(z‘q).d/nﬂ' = Ez‘uj"

fori < n, ¢ < kand j' < d/n,else 0. If c(w) =
c1(w),...,cn(w) is the code for w and A, ; is the corre-
sponding weights in the structured sparse matrix, then the
embedding for word w with block diagonal matrix is

1 . . n
By = At Bl (s Mo B ] 1)

which is weighted concatenation of the rows of the sub-unit
embedding matrices corresponding to the code ¢(w). Note



that the concatenation using unweighted sparse matrix does
not require any extra computation.
Band structure: Let E’s be matrices of size k x d, then E¢
is the matrix obtained by stacking entries of E’s one below
anotheri.e.,

EGi-vy ki = B e

Under the band structure, the embedding can be computed as
E, = ,\w,lEgl(w) o A B s )

which is the weighted sum of rows corresponding to the code
c(w). Note that to store the structured dense matrix E° it is
sufficient to store the sub-unit embedding matrices E's and
hence the space used in the block-diagonal structure is k£ x d
and the space used by the band structure is k£ x d x n. If the
parameters are tied i.e., all E's are equal, then the number of
parameters reduces by a factor of n.

2.4. WEST interpretation

In WEST, the input and output operates on word level while
the internal representations function on sub-unit levels. For
example, the input embedding of each word can be ob-
tained either by concatenation (1) or sum of sub-unit em-
beddings (2). Further, WEST for softmax layer can be
interpreted as MaxEnt model over sub-unit weights. If & is
the penultimate layer activation and E° is a band structured
matrix, the logit for class w is

lw — Ew h = Z Au}7iE;(1U) ’ h’

i=1
and the posterior probability is

exp(lw)

> XD (lwr)
1 " ,

= exp DYFRT ey BN )]
Z(h) (; 1 e (w) )

where Z(h) is the normalization factor. We speculate this
property distinguishes WEST from other sub-unit models
(like character or word-piece) in the way it models the prob-
ability of next word given the history. The character model
predicts the probability of next word west, given history ¢
via the following chain rule:

P(w|g) - P(e|¢,w)----

where <eow> is the end of word symbol. Estimating the word
probability with the above equation is difficult as the recur-
rent model needs to remember longer contexts of sub-units.
Furthermore, since these models are normalized on sub-units,
they assign probabilities to character sequences that are not
in the vocabulary e.g., "wese”. Similar to character or word-
piece models, WEST uses sub-units, but the predictions are
over larger units (e.g, words). This has two advantages: it has

Plwlh) =

P(<eow>|p,w,e, s, t),

Test PPL
Train PPL Test PPL

0625 125 25 50 100 200 400 800
Num trainable parameters [k]

0625 125 25 50 100 %0 40 800
Num trainable parameters [k|

(a) Compression for different
code-lengths

(b) Generalization (n = 8)

Fig. 2. WEST embedding performance on PTB with random codes.
WEST models use an additional 10k non-trainable parameters to
store the seeds for random codes.

a smaller memory footprint as it uses sub-units internally and
it has modelling advantage as it outputs normalized probabil-
ities over larger units. WEST estimation of P(west|h) via
Eq. (3) is very similar to MaxEnt framework [22]. Similar to
MaxEnt model the word level scores are derived by weighted
sum of sub-unit features, however the features in WEST are
trainble through all network components below the last layer.

3. EXPERIMENTS

Experiments are designed to evaluate different aspects of
WEST compression in terms of maximum achievable com-
pression rate for embedding and softmax, effect of word-level
normalization, choice of sub-units and performance for an
embedded ASR task.

Datasets. We use Penn Treebank (PTB) public dataset that
[23] consists of 929k words in the training corpus and 82k
words in the test corpus with 10k vocabulary size. The model
from [8] is used as the baseline (see Table 1 in [8] for details).
The embedded task presented here is a state-of-the-art ASR
on the phone which uses a RNN LM for second pass rescor-
ing. The vocabulary size is 64k and the model size is 15 MB
on disk (Embedding: 4.1 MB, LSTMs: 8.45 MB and Soft-
max: 4.1 MB). The WER for this model is reported on a set
of 14k anonymized, hand-transcribed voice search utterances
extracted from live traffic [6].

Maximum compression rate: The performance of WEST
embedding with random codes, unweighted sparse matrices,
and tied block-diagonal structure for PTB is presented in Fig-
ure 2. The number of trainable parameters in the embedding
matrix can be compressed up to 1000 times with perplexity
(PPL) close to baseline (dashed horizontal line). At the same
compression ratio, longer code length achieves better perplex-
ity as larger n increases sampling space size k", and thus re-
duces the collision probability. Comparing the gap between
the train and test perplexity for WEST models with baseline
suggests that the baseline model is prone to over-fitting, while
WEST models achieve similar test PPL with larger training
PPL and hence generalize better, see Figure 2(b). For soft-
max, the maximum compression rate which achieves the same
performance as baseline is about two (fourth row of Table 2).
Effect of word-level normalization: To examine the effect
of word-level normalization (3), we design the following ex-
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periment. For each word w, we first optimize the model that
estimates P(w|h) by estimating the character probability in-
dividually i.e., for the word we st, we estimate probability as
Py (w|¢) - Pa(e|@) - P3(s|¢) - Pa(t|o) - Ps(<eow>|¢), where
P;(c|¢) is the probability of i" character being ¢ with his-
tory ¢. This corresponds to the band structure without nor-
malization. The word level test PPL of this model is 366k
(char-normalized in Table 1). However, if we train the model
using WEST (3), the performance improves to 533. We fur-
ther added word-level bias term and sparse weights A, ;. This
increases the number of parameters only by 0.07M, but im-
proves the perplexity to 149.72. By increasing the number of
parameters of LSTM, the perplexity can be further improved
to 114.59 while keeping the model size same as the baseline.

Model Test PPL | # trainable params [M]

Emb | LSTM | Soft

Char-normalized 366k 2.0 0.5 0.20
Word-normalized | 533.39 2.0 0.5 0.20

238.06 2.0 0.5 0.21
149.72 2.0 0.5 0.27
114.59 2.0 2.24 0.27
11591 2.0 0.5 2.01

+ Word biases
+ Sparse weights
+ Wider Istm
Baseline

Table 1. Softmax with language codes.

Choice of sub-units. Table 2 presents the effect of various
coding schemes. The first row is the performance of the char-
acter codebook with bias and weights as in Table 1. The sec-
ond row uses random codes with alphabet size 49 (which is
equal to number of unique characters in PTB) and code length
of 12 which matches the total parameters of the character cod-
ing. The PPL for the random coding is better than the char-
acter model (row 2 and row 1 in Table 2). This shows that
the model need not use the language structure and it can learn
features with random encoding. Let Rand(k, n, t), denote
the code where the most frequent ¢ words are coded as them-
selves and rest of the words are assigned randomly. To be
more concrete, let words be ordered in decreasing order for
frequency. For w < ¢, let ¢(w) = (k + w) and for w > ¢,
the codes are randomly assigned using Rand(k, n). Note that
under this construction the alphabets assigned for top ¢ words
are unique and are not shared with any other codes. As shown
in row 3 and 4 in Table 2, the PPL gets better. Finally com-
pressing both embedding and softmax layers and distributing
the saved parameters to the LSTM, the PPL reduces to 92.36,
which is the best test PPL for this model size for PTB to the
best of our knowledge.

Large-scale embedded ASR. Table 3 presents performance
of WEST compression on a second pass RNN LM of a large-
scale on-device ASR task. The number of trainable param-
eters in the embedding layer is compressed 500 times using
WEST with random codes, unweighted sparse matrices, and
tied block diagonal structure. This doesn’t change the WER
and saves 4 MB. Storing the random codebook needs another

Sub-unit Test PPL | # trainable params [M]
Emb | LSTM | Soft
149.72 2.0 0.5 0.27
134.58 2.0 0.5 0.25
121.73 2.0 0.5 0.63
116.84 2.0 0.5 1.00
101.58 2.0 2.24 0.25
92.36 0.5 3.38 0.63

115.91 2.0 0.5 2.01

Character
Rand(49, 12)
Rand(49, 12, 2000)
Rand(49, 12, 4000)
Rand(49, 12)
Rand(49, 12, 2000)
Baseline

Table 2. Performance of different sub-units, character, Rand(k, n)
and Rand(k, n, t). The band structure was used for the softmax.

Structure PPL WER [%] Size
Test | VS | Dict | [MB]
Baseline 68.07 | 13.7 | 7.3 15
+ Embedding(15.5X) | 70.1 | 13.7 | 7.3 | 11.25
+ Softmax(3.1.X) 71.0 | 13.6 | 7.3 | 4.75
+ Quantization 71.0 | 137 | 7.3 1.35
Reallocation 56.3 | 133 | 7.1 15

Table 3. WEST for on-device second pass rescoring.

64k parameters. This gives a compression of 15.5 times for
the embedding layer. For softmax, we use band structure and
language codes where the sub-units include most frequent 16k
words and characters. This results in a moderate softmax
compression of 3.1 and the model size drops to 4.75 MB.
Note that we do not need extra space for storing the language
codebook as the information is already present in the sym-
bol table. Finally, to demonstrate the flexibility of WEST to
integrate with other compression techniques, we apply scalar
quantization on top of already compressed WEST model to
reduce the model size to 1.35 MB, resulting in a total of 11
times compression without any performance degradation. If
the parameter savings from embedding and softmax is used
in LSTMs while keeping the same size of the baseline model,
WER improves by 3% relative (last row of Table 3). We re-
mark that we obtained similar compression rates using ran-
dom codes instead of language codes.

4. CONCLUSION

We proposed WEST, a single-stage compression technique
for reducing the size of embedding and softmax layers.
WEST bridges the gap between larger unit and smaller sub-
unit models and provides a general framework that can be
interpreted as MaxEnt model over sub-units. We reported
significant compression rates for embedding and moderate
rates for the softmax layer. Our experiments showed that the
choice of sparse and dense matrices do not matter for the
embedding layer, but they do matter for the softmax layer.
In particular for softmax compression, variations of random
codes performed slightly better than character codes and
weighted sparse matrices performed significantly better than
unweighted sparse matrices. Finally, we demonstrated that
beside compression, while keeping overall model size fixed,
reallocating saved parameters from WEST to other network
components can result in even better performance.
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