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ABSTRACT

In this work we focus on confidence modeling for neural net-
work based text classification and sequence to sequence models in
the context of Natural Language Understanding (NLU) tasks. For
most applications, the confidence of a neural network model in it’s
output is computed as a function of the posterior probability, deter-
mined via a softmax layer. In this work, we show that such scores
can be poorly calibrated [1]. We propose new ensemble and gra-
dient based features that predict model uncertainty and confidence.
We evaluate the impact of these features through a gradient boosted
decision tree (GBDT) framework to produce calibrated confidence
scores. We demonstrate that the performance of our proposed ap-
proach surpasses the baseline across multiple tasks. Moreover, we
show that this method produces confidence scores which are better
suited for Out-Of-Distribution(OOD) classification when compared
to the baseline.

Index Terms— Confidence modeling, uncertainty estimation,
out-of-distribution classification

1. INTRODUCTION

In most intelligent personal digital assistant systems like Alexa,
Google Assistant and Siri, there are multiple Natural Language Un-
derstanding (NLU) domains, which can provide a response to the
user query [2]. In order to evaluate which of these responses is best
suited, the system needs to have a measure of how confident each
of these answer providers is about their response. Having a better
confidence estimation for the competing models enables reliable
decision making in terms of which response to choose. This is espe-
cially important in the case of third party response providers (skills)
competing with internal components [3].

Neural networks are central to many of the component NLU
systems, and are used as classifier and sequence prediction models.
Typically the models use softmax to assign scores to output labels.
However, most of these models tend to misclassify examples with
high softmax probability, which is undesirable.

Our main contributions in this paper are new features based on
ensemble diversity and gradient based measures that correlate with
model confidence and an algorithm to combine these features with
the posterior probability baseline using a regression model with
instance-level {0/1} accuracy as target. We show that the proposed
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features and confidence prediction model produce a more calibrated
confidence score. We apply our algorithm to various utterance clas-
sification tasks such as intent classification, domain classification,
third party (3P) skill identification[3] and measure the performance
of the model by evaluating metrics such as probability alignment
score, soft F1 score [1], reliability diagrams [4] and correlation co-
efficient with respect to instance-level accuracy. We compare these
metrics to the baseline which is the softmax probability of the pre-
diction. In addition, we evaluate the performance of the confidence
score by applying it to OOD classification for first and third party
skills [5] and show that it surpasses the baseline.

The rest of the paper is structured as follows. In section 2, we
explore the related work in this domain. We introduce the uncer-
tainty features (gradient, ensemble) we use in section 3. In section 4,
we elaborate on our proposed training algorithm for the confidence
model and the experimental setup along with the datasets used. We
also provide background on the various metrics used to evaluate con-
fidence models. We compare the performance of our model with that
of the baseline and also it’s ability to classify OOD data in section 5.
We conclude with a summary of our findings in Section 6

2. RELATED WORK

Calibrated confidences are known to be critical for applied NLU sys-
tems [6] [7]. [1] Presents a baseline for confidence scores in the con-
text of neural models and shows that the baseline can be surpassed
by using an auxiliary decoder while training. [8] Explores uncer-
tainty estimation for machine translation by analyzing the model
distribution. As an alternative to training multiple models for pro-
ducing more calibrated confidence scores, [9] Proposes the use of
network at the end of each epoch as a different model. [4] Provides
an algorithm to calibrate the predictions by extending platt scaling.
[10] Proposes an approach to measure uncertainty of Convolutional
Neural Networks (CNN) by using gradient features during test time.
[11] Proposes a non-Bayesian approach similar to the ones above
by using deep ensembles to measure uncertainty. [12] Proposes a
regression based model framework for confidence estimation.

Various metrics to evaluate confidence scores have been pro-
posed previously. [1] Introduces two metrics namely, Probability
Alignment Score (PAS) and soft F1 score which are representations
of accuracy and F1 score of the model, weighted by the confidence
of the model’s prediction. [4] Propose reliability diagrams as a visual
representation of a models calibration. The diagrams plot accuracy
as a function of the confidence score. Apart from these metrics, one
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Measure Intent Classification Domain Classification Skills Classification Query-Rewriting
Train-Set Examples 160,000 160,000 89,000 12,000,000
Dev-Set Examples 24,000 24,000 5,000 42,000
Test-Set Examples 27,000 27,000 5,000 42,000

Number of Output Classes 1,300 800 1,400 -

Table 1: Dataset statistics

other very important metric for evaluating confidence scores used
is the correlation of the confidence score to instance-level accuracy,
similar to [12].

3. FEATURES FOR MODELING UNCERTAINTY

In this section, we introduce our ensemble uncertainty features based
on softmax output probabilities as well as gradient based features.

3.1. Ensemble Uncertainty Features

Neural network models are high variance learners. Neural models
with the same architecture trained on the same training data with
different initializations and data sampling order can be viewed as
multiple experts, each with a different view of the data [11]. The
degree of agreement between multiple experts on a prediction, can
be a good predictor of the correctness of the prediction. To mea-
sure the agreement of these experts for each prediction, we first pre-
dict the probability distribution over all the outputs for each model.
The mean of the output distribution is computed and the Kullback-
Leibler(KL) divergence of each model’s output distribution with the
mean output distribution is computed. With this, we obtain a KL
divergence value for each model and data-point. Taking the mean
and variance of these KL values, we get the proposed MeanKL and
VarKL features (Algorithm 1).

Algorithm 1 Ensemble Uncertainty Features
Input: PΘ,x = Pθ1,x, Pθ2,x, . . . , Pθn,x, where Pθi,x is the
probability distribution over output classes for model with pa-
rameters θi for input x
Output: MeanKLx, V arKLx
Procedure:
meanPDx←− mean(PΘ,x)
KLV aluesx←− ∅
for i in 1, 2, . . . n do

KLV aluesx[i]←− KLDivergence(meanPDx, Pθi,x)
end
MeanKLx←− mean(KLV aluesx)
V arKLx ←− variance(KLV aluesx)
Return: MeanKLx, V arKLx

3.2. Gradient Uncertainty Features

As proposed by [10], we employ gradient based features as a sign
of ’re-learning-stress’ in addition to the ensemble features. These
features can seen as a measure of the model’s uncertainty. Model
parameter gradients are computed with respect to the loss given the

Algorithm 2 Gradient Uncertainty Features
Input: Mθ, x where Mθ is Model with parameters θ and x is
the data-point
Output: GradStatsθ,x
Procedure:
outputPredθ,x←−Mθ(x)
predClassθ,x←− argmax(outputPredθ,x)
targetθ,x←−OneHotEnc(outputPredθ,x.size, predClassθ,x)
loss←− CrossEntropy(targetθ,x, outputPredθ,x)
Gradθ,x←− Gradient(θ, loss)
for pool in (max,min,mean, var, sum) do

GradStatsθ,x[pool]←− pool(Gradθ,x)
end
Return: GradStatsθ,x

output distribution and the predicted class as the target. The gra-
dients of the embedding matrix can provide information about in-
put uncertainty or how sensitive the prediction is to the input text.
The statistical measures such as mean, variance, minimum, maxi-
mum and absolute sum are used to represent the ’re-learning-stress’.
These statistics computed with respect to all parameters except the
embedding layer parameters are used as measures of model uncer-
tainty. A input uncertainty feature is represented by computing the
same statistics with only the embedding layer parameters taken into
consideration.

In the next section we describe how we use the ensemble and
gradient based features along with posterior probabilities to train a
confidence prediction model on various NLU tasks (Algorithm 2).

4. EXPERIMENTAL SETUP AND DATASET DESCRIPTION

We tested our approach on three sentence classification tasks and
a query rewriting task on subsets of Alexa NLU datasets collected
from random users. The tasks were created from a subset of Alexa
data and were chosen to do a controlled evaluation of different ap-
proaches for confidence modeling and not as a means to improve
the accuracy of the production system. For classification tasks, the
datasets used were for intent (first party skills) classification, domain
classification and skill (third party skills) classification. Each of
these datasets have a sentence as input and corresponding target (in-
tent, domain, skill) as output. The query rewriting task is a sequence
prediction task where we model consecutive friction utterances from
Alexa users where the first utterance was unsuccessful and the sec-
ond one was successful. In this task, we want to learn from users
how to fix an unsuccessful utterance to a successful one. The dataset
included one month of friction utterances, where we used the last
day as a validation set, and the rest for training purpose. Table 1
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Task Correlation with instance-level accuracy Probability Alignment Score Soft F1 Score
Baseline GBDT Baseline GBDT Baseline GBDT

Intent Classification 0.6500 0.7782 0.8271 0.8626 0.4966 0.6318
Domain Classification 0.6910 0.7752 0.8253 0.8772 0.3842 0.6385

Skill Classification 0.6013 0.6616 0.7023 0.6938 0.4481 0.5390
Query Rewriting 0.4277 0.5425 0.4006 0.3967 0.7954 0.7854

Table 2: Confidence calibration metrics evaluated on the posterior probability baseline and the proposed features incorporated in a GBDT
model.

describes the size of our dataset for these tasks.
Next we look at the design of our classification and query rewrite

models, followed by our approach to use the features presented in
Section 3 for confidence modeling.

4.1. Classification and query rewrite models

The classification models have similar architectures. The input is
transformed into vector representations by an embedding layer. The
sequential input is fed into an LSTM[13] unit. The hidden state rep-
resentation of the last time-step is fed into a linear layer which trans-
forms it into the output vector space. Softmax activation is applied to
this vector to produce a probability distribution over possible labels.

The rewriting model is a seq2seq model with a Recurrent Neural
Network (RNN)-based encoder and decoder with attention [14] and
copy [15] mechanisms.

4.2. Confidence Model

The confidence model for each task is trained on the the dev-set
of the corresponding task, so that the model scores and other fea-
tures are more representative of test or evaluation condition. We
generate ensemble and gradient feature representations (Section 3)
for each dev-set instance, along with the posterior probability of the
predicted class. A gradient boosting decision tree (GBDT) regressor
[16] model is trained with these features as inputs and the instance-
level {0,1} prediction error as the target. For the query rewriting
model, the instance-level accuracy is calculated by comparing if both
the ground truth and rewritten query are mapped to the same intent
and slots. The models are evaluated on the test-set of the correspond-
ing tasks.

As an ensemble of multiple models is used, the prediction is
computed by pooling the output probability distributions through
summation of each models softmax output and choosing the class
with the maximum value as the predicted class. Instance-level pre-
diction error labels are computed by matching this prediction with
the ground-truth. The GBDT model is trained with the default set-
tings in the Scikit-Learn library and the output of the regression
model is clipped to the range [0,1]. Moreover, the gradient features
are computed with respect to each model in the ensemble and the
mean of each statistical measure is taken across the models.

The features used in the confidence model for the query rewrit-
ing task are extensions of the features used in the classification tasks.
Due to the sequential nature of the outputs generated, pooling op-
erations (minimum, maximum, mean, variance) are performed on
the probability distributions across time-steps to remove the depen-
dency on the output sequence length. Additionally, the MeanKL and
VarKL features are pooled across time-steps as well. The Seq2Seq

model produced a probability of generation(p gen) at each time-step
during prediction. These probabilities were used as features as well.
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Fig. 1: Reliability diagrams for intent classification and query
rewriting. The solid line represents the reliability plot for a perfectly
calibrated model.

5. RESULTS & ANALYSIS

We compare our proposed approach to the baseline which is the pos-
terior probability. Table 2 shows the Pearson correlation coefficients
for the confidence scores generated by our confidence models and
the accuracy of the predictions. It can be clearly seen that our model
outperforms the baseline in all four cases. For the probability align-
ment metric, our confidence model performs better than the baseline
in two of the four cases, however the difference is minimal in the
other two cases. An explanation for this observation could be that
the confidence models are unable to quantify uncertainty due to the
poor performance of the task specific models they were trained on.
This is observed in the case of the soft F1 score as well.

Reliability diagrams are plotted by computing accuracy as a
function of the confidence score. This is done by binning the con-
fidence scores into specific intervals and computing accuracy of
examples in each interval. As per the definition of confidence, a
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Experiment Metric Threshold
0.01 0.025 0.05 0.1 0.2

Baseline 71.87% 68.09% 64.16% 58.73% 49.06%
First Party Skills Data GBDT Model 76.78% 75.29% 72.65% 67.54% 61.31%

Baseline 85.20% 51.82% 49.30% 44.35% 38.32%
Third Party Skills (Intent) Data GBDT Model 94.77% 94.58% 94.19% 92.28% 90.6%

Table 3: Percentage of samples having the difference in the corresponding score predicted by the two models greater than the threshold. The
difference for the skills data was computed between the metric predicted by the skills model and the intent model and vice-versa for intent
data. The predicted confidence score outperforms the baseline for all thresholds.
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Fig. 2: Variable importance as per the regression model for each
task.

model whose predictions have a confidence of x should have ex-
pected value of accuracy as x. Hence an ideal reliability diagram
is an identity function or the solid line in Figure 1. As can be seen
from Figure 1, our confidence model is highly calibrated for both
sentence classification and query rewriting tasks. Note that we have
only included the intent classification plots because of space con-
straints. The posterior probability in comparison, is not calibrated.
The relative importance of the features used in the regression model
can be observed in Figure 2. Features such as ’Emb Grad Sum’,
’Grad Sum’ represent the gradient features and ’Mean KL’, ’Var
KL’ represent the ensemble features. For the query rewriting task,
the features such as ’max prob var’, ’max prob min’ are features
obtained by pooling the posterior probabilities of all time steps and
features such as ’MeanKL mean’, ’VarKL mean are obtained by

pooling the Mean KL and Var KL features of all time steps. The
gradient features and ensemble features play a significant role in the
confidence score prediction. Confidence models that were trained
using the same framework but without ensemble or gradient fea-
tures do not surpass the baseline, proving the effectiveness of our
proposed features in quantifying uncertainty.

For further analysis of the effectiveness of the proposed method,
we compare the confidence scores predicted by the intent confidence
model for the skills data and vice versa. Using two different mod-
els to classify the utterance as a match for first or third party skill
gives us two predictions for each data-point. By choosing the pre-
diction with higher confidence, we eliminate the need for a classifier
that performs first party versus third party skills classification. Ta-
ble 3 shows the number of examples from each dataset that had a
difference in the confidence scores greater than the threshold. By
varying the threshold, we modify the confidence gap and choose to
proceed with the model with higher confidence or re-query the user
for validation.

The proposed model clearly outperforms the baseline in both the
cases, as can be seen from Table 3. The confidence model assigns
a lower confidence score to utterances that must be serviced by the
other set of skills and widens the confidence gap for a higher per-
centage of examples than the baseline. This shows that the proposed
model provides scores better suited for detecting Out-of-Domain
samples.

6. CONCLUSION & FUTURE WORK

By using ensemble and gradient features to represent uncertainty and
combining the features with posterior probability, we demonstrate
that our proposed confidence model outperforms the baseline in al-
most all cases with respect to the evaluation metrics used. Moreover,
the proposed technique provided improvements on a sequence to se-
quence query rewriting task as well, showing that our approach can
be adapted to other tasks by making minor changes to the features
used.

The proposed model is computationally demanding due to the
computation of gradients features and ensemble features. However
the ensemble features can be computed much faster by parallelizing
the forward pass of each of the models. A different avenue to ex-
plore would be to alter training schedules and architectures with an
additional loss that calibrates posterior probabilities implicitly.
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