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ABSTRACT

Off-the-shelf speech recognition systems can yield useful
results and accelerate application development, but general-
purpose systems applied to specialized domains can introduce
acoustically small—but semantically catastrophic—errors.
Furthermore, sufficient audio data may not be available to
develop custom acoustic models for niche tasks. To address
these problems, we propose a concept to improve perfor-
mance in text classification tasks that use speech transcripts
as input, without any in-domain audio data. Our method aug-
ments available typewritten text training data with inferred
phonetic information so that the classifier will learn semanti-
cally important acoustic regularities, making it more robust to
transcription errors from the general purpose ASR. We suc-
cessfully pilot our method in a speech-based virtual patient
used for medical training, recovering up to 62% of errors
incurred by feeding a small test set of speech transcripts to a
classification model trained on typescript.

Index Terms— Low-resource, spoken dialog systems,
chatbot

1. INTRODUCTION

Speech recognition is error prone, whether done by machines
or humans. Contextual awareness, including speaker identity,
situational context, conversation history, etc., allows human
listeners to outperform automatic systems by placing strong
priors on the phonetic and semantic content of a message,
which are generally not available to general-purpose auto-
matic speech recognition (ASR) systems. Nonetheless, there
is strong interest in using ASR for human interaction with
computers, and, of course, for these systems to perform well
for a variety of specialized tasks.

An obvious approach to improving the performance of
ASR systems deployed in custom domains is to train custom
acoustic and/or language models for the application. How-
ever, the extensive annotated speech training data required
to develop high quality models may not be available in new
or especially unique domains. In such low- or no-resource
cases, it may make sense to deploy a broad-purpose ASR sys-
tem, and to make the downstream task tolerant of ASR errors.

However, without speech transcripts from the general purpose
system in the target domain, training a downstream task to be
tolerant of those errors is not straightforward.

In order to increase the robustness of downstream tasks
to ASR errors, we propose a simple method that allows us to
leverage existing text data within the domain of interest. In
brief, we infer phonetic representations of the in-domain data
from the text modality using a grapheme-to-phoneme con-
verter, and train the downstream task using both the original
text input, as well as the inferred phonetic form of the same
data. The speech recognizer, lacking domain-specific mod-
els, may sometimes produce transcripts of generally likely
words that have no semantic connection to what was said—
e.g., “Oreo” instead of “how are you”—but which share some
acoustic similarities. The downstream model should know
what the important semantic distinctions “sound like,” so that
if the ASR produces the wrong words, the downstream model
still has a chance to reinterpret the sounds correctly.

We find that this method recovers a substantial portion of
the errors resulting from naively using speech transcripts as
input to a model trained only on the text. We are able to fur-
ther boost performance by generating alternative versions of
the text input that a speech recognizer is likely to produce in
error, and randomly sampling these as alternatives of the orig-
inal text during training. Our error generation method does
rely on speech data to determine specific error likelihoods,
but importantly, we are able to show a benefit by using an
out-of-domain, general purpose speech corpus.

The system that we use to test this concept, and what mo-
tivates the work, is a virtual patient dialog system used to train
medical students at Ohio State to take patient histories. Tra-
ditionally, this skill is trained and evaluated by hiring actors
to play patients for students to interview; the virtualization of
this interaction reduces costs, increases consistency, and ac-
celerates feedback to the students. Previous iterations of the
virtual patient have utilized a keyboard interface to allow stu-
dents to ask the patient questions. The task of the system is to
correctly classify the typed natural language questions as one
of over 350 known questions, to elicit the correct prepared re-
sponse; the current deployed system combines rule-based and
machine learning-based systems using the text modality [1].

While speech is a more natural modality for doctor-patient
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interactions, data collection and availability is challenging for
a number of reasons. Students receive instruction about which
questions are important to ask, and why; thus, crowdsourcing
collection with untrained laypeople is not useful. Students
are also engaged in a rigorous curriculum, so their time is
limited, and annotators are likewise busy medical experts. In
this study, the only data available for tuning the speech recog-
nition of the virtual patient actually come from the typed con-
versations of previous versions of the patient.

Throughout this text we use typescript to refer to the type-
written conversations with the virtual patient, and speakscript
to refer to speech recognition transcripts.

2. RELATED WORK

Dialog systems have recently attracted a fair amount of re-
search attention in terms of both interpreation and generation
of natural dialog, e.g. [2]. This work focuses solely on inter-
pretation: for language generation we rely on precise prede-
fined answers required by the medical teaching staff for edu-
cational training and assessment.

Dialogue system development in the face of resource con-
straints has been a challenge for several groups. Plauché et al.
describe methods for language adaptation for speech dialog
systems in a target language with little recorded speech data,
by adapting recognition models as new input is collected [3].
In perhaps the closest work to ours, Sarikaya et al. deploy
spoken dialog systems in new domains with little or no re-
sources [4], mining static text resources to develop in-domain
language models to improve the speech recognition perfor-
mance directly. We are unaware of other work utilizing in-
domain, cross-modal data to improve the compatibility of a
downstream model and a general-purpose speech recognizer.

Of course, we build directly upon the previous work in
the target domain [1], and deploy text CNNs [5] as our down-
stream classification model.

3. MODEL

The virtual patient is a graphical application developed using
Unity3D, and deployed on tablet computers. The general-
purpose speech recognition system that we use is a commer-
cially available cloud-based ASR system. All dialog manage-
ment is handled on a central server through an HTTP interface
with the graphical client application.

The downstream classification model used to identify
questions is an ensemble of text CNNs [5], following [1]
(Figure 1). We train two sub-ensembles and combine their
output with a stacking network [6]. The stacking network
outputs a weighted sum of its inputs, with weights learned to
minimize the error. Each sub-ensemble is trained on one of
the two forms of the input, i.e. inferred phonetic representa-
tion, and original typescript. The output of each sub-ensemble
is determined by majority voting, which empirically performs

Fig. 1. Overview of the classification model. Phoneme- and word-
based representations are input to ensembles of text CNNs. Output
of ensembles is determined by majority voting, and combined in a
stacking network to produce final classification output.

better than a product of experts [7] or averaging. Vote tallies
of each sub-ensemble serve as input to the stacking network.

Both sub-ensembles consist of five convolutional net-
works, each trained on a different subset of the data. Each
of these has a single convolutional layer followed by ReLU
activations and max pooling, using dropout of 0.5. This is
fed into a single fully-connected linear layer to produce the
359-dimensional softmax output of the network, which is
trained using a cross-entropy criterion.

Phoneme-based CNNs take input of one channel of 16-
dimensional embeddings (except for the 2-channel condition,
see section 4.1), initialized randomly and tuned for the task.
Convolutional layers consist of 400 kernels each of widths
2 through 6 phonemes. Input to word-based CNNs are 300-
dimensional pretrained word2vec embeddings [8] held static
during training. Word-based networks use 300 kernels each
of widths 3, 4, and 5 words.

Under sampling conditions, training examples have alter-
nate versions which may be presented for training instead of
the original input. These alternate versions simulate generic
ASR errors (see Section 4.1). We first randomly determine
whether to choose an alternate; if an alternative is desired it is
sampled according to the likelihood of its generation.

4. EXPERIMENTS

The main experimental variables that we manipulate are the
representation of phonemes used, and the rate at which we
randomly sample erroneous alternative forms of the input. In
this section we describe in detail the data used in the experi-
ments, as well as the experimental conditions.

4.1. Data

The base training data consists of 94 typescript conversations
with a virtual patient experiencing back pain. Students col-
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lect information about the patient’s present illness, past med-
ical history, family medical history, and social history. The
94 conversations comprise 4,330 individual queries and re-
sponses, with all questions annotated as belonging to one of
359 known classes. Class frequencies exhibit a long tail, with
the top quintile of data consisting of only eight classes, and
the bottom quintile consisting of 265 classes. The least fre-
quent classes have only one example in the dataset. Spelling
errors occur regularly, and are generally left as-is (although
some unpronounceable special characters were stripped for
the purpose of phonetic inference).

Phonetic data is derived from the typescript by looking
up the pronunciation in CMUdict (omitting stress), or using
a Phonetisaurus [9] grapheme-to-phoneme model trained on
CMUdict for unknown words. We experiment with three vari-
ations on the phonetic representation. The plain phones con-
dition simply concatenates the phoneme sequences of the con-
stituent words in the sentence in order. The boundary tokens
condition adds a single “boundary phoneme” to the alpha-
bet, which is inserted between words, to explore the value of
word segmentation information in the semantic classification
task. Finally, the 2-channel condition adds word boundary
information in a second channel to the text CNNs comprising
the phonetic sub-ensemble. In other words, each phoneme is
represented as both the identity of the phoneme, as well as
whether or not that sound is the start of a word (both encoded
as a 16-dimensional embedding vector).

Simulated ASR error alternatives are generated by a
method due to [10]. Briefly, the method aims to simulate
a neural acoustic model making incorrect predictions, and to
decode the resulting lattice as usual, generating text that is
likely to be erroneously produced by a non-domain specific
acoustic model. The technique samples both when to produce
an erroneous phoneme, and which one to produce, if so. The
distribution of phoneme choice is learned from the confusions
produced by a trained model, but the posterior probabilities of
erroneous phonemes are determined using the confusibility of
the original phoneme, to simulate an over-confident system.
This method is used to generate up to 100 alternatives for
a given typescript input sentence, along with the frequency
with which each alternative is produced.

To evaluate the effects of our data augmentation, we
collected a small test set of speakscript. Six adult, native
English-speaking volunteers, three each male and female,
read dialogs from a typescript dataset distinct from the set
used for training. These read-speech utterances were fed
into the target ASR system to collect the corresponding
speakscript. The dataset consists of 756 transcribed utter-
ances. After spelling correction of the typescript input, word
error rate of the speakscript output was calculated at ap-
proximately 10%. Classification accuracy of the speakscript
test set in the combined typescript-trained model was 65.7%
(cf. 69.9% for typescript input). We also generated phonetic
forms of the speakscript test data.

The test set does have several shortcomings: its size does
not admit very many of the types of errors we would be able
to correct with our method; read speech is better-behaved
than spontaneous speech; and it includes some unseen labels.
Nonetheless, it allows an evaluation of our approach.

4.2. Experimental details

All models in each sub-ensemble are trained individually, us-
ing distinct 90/10 train/dev splits, using the Adadelta learn-
ing rule [11], with initial learning rate 1.0. We train each
sub-model for 25 epochs, and keep the model from the epoch
with the best dev set performance. We report accuracy for
each sub-ensemble (Phonemes and Words), as well as the ac-
curacy of the combined system. With the exception of the
“all alternatives” condition (see below), all of the different
inferred phonetic representations used the same training and
development splits during training. The training data for ev-
ery model in the ensemble was supplemented with a list of the
“canonical” sentences for each of the 359 classes. Thus, the
development set for every model was guaranteed to have no
unseen classes.

We include the results of an early experiment in which we
simply trained the whole system using all of the available al-
ternative error forms, randomly shuffled, and split 90/10 for
each sub-model. This experiment was unsuccessful (see sec-
tions 5 and 6), but was motivation for implementing the sam-
pling paradigm, so we report its results for comparison.

In addition to altering the phonetic input representation,
we experiment with sampling rates ranging from 0-50% for
error alternatives. In experiments using sampling, dev set ex-
amples never use sampled alternatives.

5. RESULTS

Results are reported in Table 1. Likely due to the small sizes
of the training and test sets, as well as the randomness intro-
duced by sampling, the results exhibit a fair amount of varia-
tion from run to run. Therefore, we report averages over three
runs under identical model parameterizations.

The best-performing combined system is plain phonemes
with a sampling rate of 20%; this recovers approximately
62% of the increased error rate in using speakscript within a
typescript model. Plain phonemes also exhibit the best perfor-
mance among the non- sampled conditions. 2-channel bounds
give the best performing phoneme sub-ensemble, although
the difference comes nowhere close to statistical significance.
Combined systems are always at least as good as either of the
constituent sub-ensembles, and usually much better.

6. DISCUSSION

The aforementioned test set issues make it difficult to make
sweeping pronouncements about the results, but we do find
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Sampling Phonemes Words Combo
Baseline
(typescript) N/A

System trained as
combination only 69.9

Baseline
(speakscript) N/A

System trained as
combination only 65.7

All
alternatives

N/A 64.95 65.48 65.74

Plain
phonemes

0% 67.15 66.27 67.55
5% 66.89 66.76 67.68

10% 66.75 66.40 67.73
20% 66.75 66.00 68.30
50% 66.36 66.09 67.50

Boundary
tokens

0% 66.45 66.09 67.64
5% 66.67 66.05 67.86

10% 66.58 66.88 67.90
20% 65.88 66.76 67.77
50% 65.96 66.31 67.99

2-channel
bounds

0% 67.37 66.89 67.37
5% 66.67 66.58 67.59

10% 66.48 66.40 67.42
20% 66.62 66.89 68.12
50% 67.11 66.36 67.95

Table 1. Test set question classification accuracy, reported as the
average of three runs. Column maxima in bold font. All “Combo”
results are a significant improvement over the speakscript baseline
using Pearson’s χ2 and the Benjamini-Hochberg multiple tests cor-
rection [12] with a false discovery rate of 10%.

some encouraging trends. The two clearest such results are
1) that even inferred phonetic representations can improve
speech recognition input for downstream tasks, and 2) that
sampling generated errors further boosts performance.

The motivation for sampling in the first place derives
from the negative result from the “all alternatives” condi-
tion. In essence, including all alternatives just allowed for
serious overfitting: with only minor variations in the train-
ing examples, it overspecialized on the specific sentences
underlying the alternate forms, harming performance on un-
seen sentences. This may have been mitigated with smarter
stratification of the development sets, but sampling alterna-
tives also enhances variety in the surface forms for each label
without making the development sets easier.

Because sampling does not seem to benefit solely word-
based or phoneme-based systems, it would seem that sam-
pling encourages diversification across the two sub-ensembles,
as the best combination results usually do not have the best
component results. Indeed, the best-performing individual
systems that contribute to the averages shown in the table
maintain this trend (data not shown).

The benefit of word boundary information is less clear:
the best-performing model on average included no word
boundary information, and the second best average used the
version of word boundaries that is easiest to ignore; however,

boundary tokens sometimes outperform other representations
under otherwise equivalent conditions. This speaks to the
need for further experiments with more statistical power.

7. FUTURE WORK

As this was a pilot study, there are many avenues for improve-
ments to the current work, as well as new questions identified
by the experiments presented. First and foremost is the need
for more data, both to improve generalizability of the mod-
els, as well as to put the results on firmer statistical footing.
This study will actually facilitate the collection of that data,
as even slight improvements will improve the user experience
of new students using the application for their training.

An intriguing question raised by the current study is why
random alternative sampling affords a benefit, and whether
the mechanism of the benefit is the same for phone repre-
sentations as for words. One possibility is that sampling is
just a form of regularization, which may be born out by the
slight drops in performance for each of the sub-ensembles —
suggesting the need to directly compare to other types of reg-
ularization. A further possibility is just that, by luck, the ran-
dom samples introduce some of the specific errors seen in the
test set. If this were the case, we might expect less benefit
in a broader domain, as confusible words begin to impinge
on important topics. To borrow an example from the present
set of alternatives, “toaster” is probably a safe replacement
for “mister” in our domain, but only because questions about
breakfast are irrelevant to the patient’s back pain.

Also of interest are ways in which we might more directly
encourage acoustic similarities to be represented in the input,
instead of depending on the distant supervision of the correct
semantic class and generated errors to encourage similarities
to emerge. One straightforward option to try would be to ini-
tialize the embedding matrix for phonemes with correspond-
ing average MFCCs or GMM representations.

Finally, we are currently experimenting with a form of
knowledge distillation for application to this task, in which we
seek to minimize the mean squared error between analogous
layers in a high-performing network and a network learning
from alternative versions of the same input. In this way we
hope to encourage the representations of the alternatives to
become similar in semantically coherent ways. Initial results
have been promising, but did not surpass the best models pre-
sented here.
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