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ABSTRACT

Spoken question answering (SQA) is challenging due to com-
plex reasoning on top of the spoken documents. The recent
studies have also shown the catastrophic impact of automatic
speech recognition (ASR) errors on SQA. Therefore, this
work proposes to mitigate the ASR errors by aligning the
mismatch between ASR hypotheses and their corresponding
reference transcriptions. An adversarial model is applied to
this domain adaptation task, which forces the model to learn
domain-invariant features the QA model can effectively uti-
lize in order to improve the SQA results. The experiments
successfully demonstrate the effectiveness of our proposed
model, and the results are better than the previous best model
by 2% EM score.

Index Terms— adversarial learning, spoken question an-
swering, SQA, domain adaptation

1. INTRODUCTION

Question answering (QA) has drawn a lot of attention in
the past few years. QA tasks on images [1] have been
widely studied, but most focused on understanding text docu-
ments [2]. A representative dataset in text QA is SQuAD [2],
in which several end-to-end neural models have accomplished
promising performance [3]. Although there is a significant
progress in machine comprehension (MC) on text documents,
MC on spoken content is a much less investigated field. In
spoken question answering (SQA), after transcribing spoken
content into text by automatic speech recognition (ASR), typ-
ical approaches use information retrieval (IR) techniques [4]
to find the proper answer from the ASR hypotheses. One
attempt towards QA of spoken content is TOEFL listening
comprehension by machine [5]. TOEFL is an English exami-
nation that tests the knowledge and skills of academic English
for English learners whose native languages are not English.
Another SQA corpus is Spoken-SQuAD[6], which is auto-
matically generated from SQuAD dataset through Google
Text-to-Speech (TTS) system. Recently ODSQA, a SQA
corpus recorded by real speakers, is released [7].

To mitigate the impact of speech recognition errors, us-
ing sub-word units is a popular approach for speech-related
downstream tasks. It has been applied to spoken document
retrieval [8] and spoken term detection [9] The prior work
showed that, using phonectic sub-word units brought im-
provements for both Spoken-SQuAD and ODSQA [6].

Instead of considering sub-word features, this paper pro-
poses a novel approach to mitigate the impact of ASR errors.
We consider reference transcriptions and ASR hypotheses as
two domains, and adapt the source domain data (reference
transcriptions) to the target domain data (ASR hypotheses) by
projecting these two domains in the shared common space.
Therefore, it can effectively benefit the SQA model by im-
proving the robustness to ASR errors in the SQA model.

Domain adaptation has been successfully applied on com-
puter vision [10] and speech recognition [11]. It is also widely
studied on NLP tasks such as sequence tagging and pars-
ing [12, 13, 14]. Recently, adversarial domain adaptation
has already been explored on spoken language understanding
(SLU). Liu and Lane learned domain-general features to ben-
efit from multiple dialogue datasets [15]; Zhu et al. learned
to transfer the model from the transcripts side to the ASR hy-
potheses side [16]; Lan et al. constructed a shared space for
slot tagging and language model [17]. This paper extends the
capability of adversarial domain adaptation for SQA, which
has not been explored yet.

2. SPOKEN QUESTION ANSWERING

In SQA, each sample is a triple, (q, d, a), where q is a question
in either spoken or text form, d is a multi-sentence spoken-
form document, and a is the answer in text from. The task of
this work is extractive SQA; that means a is a word span from
the reference transcription of d. An overview framework of
SQA is shown in Figure 1. In this paper, we frame the source
domain as reference transcriptions and the target domain as
ASR hypotheses. Hence, we can collect source domain data
more easily, and adapt the model to the target domain.

In this task, when the machine is given a spoken docu-
ment, it needs to find the answer of a question from the spo-
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Fig. 1. Flow diagram of the SQA system.

ken document. SQA can be solved by the concatenation of
an ASR module and a question answering module. Given the
ASR hypotheses of a spoken document and a question, the
question answering module can output a text answer.

The most intuitive way to evaluate the text answer is to di-
rectly compute the Exact Match (EM) and Macro-averaged
F1 scores (F1) between the predicted text answer and the
ground-truth text answer. We used the standard evaluation
script from SQuAD [2] to evaluate the performance.

3. QUESTION ANSWERING MODEL

The used architecture of the QA model is briefly summarized
below. Here we choose QANet [3] as the base model due
to the following reasons: 1) it achieves the second best per-
formance on SQuAD, and 2) since there are completely no
recurrent networks in QANet, its training speed is 5x faster
than BiDAF [18] when reaching the same performance on
SQuAD.

The network architecture is illustrated in Figure 2. The
left blocks and the right blocks form two QANets, each of
which takes a document and a question as the input and out-
puts an answer. In QANet, firstly, an embedding encoder ob-
tains word and character embeddings for each word in q or d
and then models the temporal interactions between words and
refines word vectors to contextualized word representations.
All encoder blocks used in QANet are composed exclusively
of depth-wise separable convolutions and self-attention. The
intuition here is that convolution components can model lo-
cal interactions and self-attention components focus on mod-
eling global interactions. The context-query attention layer
generates the question-document similarity matrix and com-
putes the question-aware vector representations of the context
words. After that, a model encoder layer containing seven
encoder blocks captures the interactions among the context
words conditioned on the question. Finally, the output layer
predicts a start position and an end position in the document
to extract the answer span from the document.
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Fig. 2. The overall architecture of the proposed QA model
with a domain discriminator. Each layer can be tied or untied
between the source and target models.

4. DOMAIN ADAPTATION APPROACH

The main focus of this paper is to apply domain adaptation for
SQA. In this approach, we have two SQA models (QANets),
one trained from target domain data (ASR hypotheses) and
another trained from source domain data (reference transcrip-
tions). Because the two domains share common information,
some layers in these two models can be tied in order to model
the shared features. Hence, we can choose whether each layer
in the QA model should be shared. Tying the weights between
the source layer and the target layer in order to learn a sym-
metric mapping is to project both source and target domain
data to a shared common space. Different combinations will
be investigated in our experiments.
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More specifically, we incorporate a domain discriminator
into the SQA model shown in Figure 2, which can enforce the
embedding encoder to project the sentences from both source
and target domains into a shared common space and conse-
quentially to be ASR-error robust. Although the embedding
encoder for both domains may implicitly learn some common
latent representations, adversarial learning can provide a more
direct training signal for aligning the output distribution of
the embedding encoder from both domains. The embedding
encoder takes in a sequence of word vectors and generates
a sequence of hidden vectors with the same length. We use
Ψtar(q) and Ψtar(d) (Ψsrc(q) and Ψsrc(d)) to represent the hid-
den vector sequence given the question q and the document d
in the target (source) domain respectively.

The domain discriminator D focuses on identifying the
domain of the vector sequence is from given Ψtar or Ψsrc,
where the objective is to minimize Ldis.

Ldis = E(q,d,a)∼tar [logD(Ψtar(q)) + logD(Ψtar(d))] (1)
+E(q,d,a)∼src [log(1 −D(Ψsrc(q)) + log(1 −D(Ψsrc(d))].

Given a training example from the target domain ((q, d, a) ∼
tar), D learns to assign a lower score to q and d in that exam-
ple, that is, to minimize D(Ψtar(q)) and D(Ψtar(d)). On the
other hand, given a training example from the source domain
((q, d, a) ∼ src), D learns to assign a larger value to q and d.

Furthermore, we update the parameters of the embedding
encoders to maximize the domain classification loss Ldis,
which works adversarially towards the domain discriminator.
We thus expect the model to learn features and structures that
can generalize across domains when the outputs of Ψsrc are
indistinguishable from the outputs of Ψtar. The loss function
for embedding encoder, Lenc, is formulated as

Lenc = Lqa − λGLdis, (2)

where λG is a hyperparameter. The two embedding encoders
in the QA model are learned to maximize Ldis while mini-
mizing the loss for QA, Lqa. Because the parameters of other
layers in QA model are independent to the loss of the do-
main discriminator, the loss function of other layers, Lother, is
equivalent to Lqa, that is, Lother = Lqa.

Although the discriminator is applied to the output of em-
bedding encoder in Figure 2, it can be also applied to other
layers.1 Considering that almost all QA model contains such
embedding encoders, the proposed approach is expected to
generalize to other QA models in addition to QANet.

5. EXPERIMENTS

5.1. Corpus

Spoken-SQuAD is chosen as the target domain data for train-
ing and testing. Spoken-SQuAD [6] is an automatically gen-

1In the experiments, we found that applying the domain discriminator to
embedding encoders yielded the best performance.

Table 1. Illustration of domain mismatch, where the models
are trained on the source domain (Text-SQuAD; T-SQuAD)
or the target domain (Spoken-SQuAD; S-SQuAD) and then
evaluated on both source and target domains.

Model T-SQuAD S-SQuAD
Training EM F1 EM F1

T-SQuAD (a) 61.31 72.66 42.27 55.61
S-SQuAD (b) 45.52 57.39 48.93 61.20
Finetune (c) 54.83 66.45 49.60 61.85

erated corpus in which the document is in spoken form and
the question is in text form. The reference transcriptions are
from SQuAD [2]. There are 37,111 and 5,351 question an-
swer pairs in the training and testing sets respectively, and the
word error rate (WER) of both sets is around 22.7%.

The original SQuAD, Text-SQuAD, is chosen as the
source domain data, where only question answering pairs
appearing in Spoken-SQuAD are utilized. In our task setting,
during training we train the proposed QA model on both
Text-SQuAD and Spoken-SQuAD training sets. While in
the testing stage, we evaluate the performance on Spoken-
SQuAD testing set.

5.2. Experiment Setup

We utilize fasttext [19] to generate the embeddings of
all words from both Text-SQuAD and Spoken-SQuAD. We
adopt the phoneme sequence embeddings to replace the orig-
inal character sequence embeddings using the method pro-
posed by Li et al. [6]. The source domain model and the
target domain model share the same set of word embedding
matrix to improve the alignment between these two domains.

W-GAN is adopted for our domain discriminator [20],
which stacks 5 residual blocks of 1D convolutional layers
with 96 filters and filter size 5 followed by one linear layer
to convert each input vector sequence into one scalar value.

All models used in the experiments are trained with batch
size 20, using adam with learning rate 1e − 3 and the early
stop strategy. The dimension of the hidden state is set to 96
for all layers, and the number of self-attention heads is set to
2. The setup is slightly different but better than the setting
suggested by the original QAnet.

5.3. Results

5.3.1. Domain Mismatch

First, we highlight the domain mismatch phenomenon in our
experiments shown in Table 1. Row (a) is when QANet is
trained on Text-SQuAD, row (b) is when QANet is trained
on Spoken-SQuAD, and row (c) is when QANet is trained
on Text-SQuAD and then finetuned on Spoken-SQuAD. The
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Table 2. The EM/F1 scores of proposed adversarial domain
adaptation approaches over Spoken-SQuAD.

Model EM F1
Baseline

S-SQuAD (a) 48.93 61.20
Finetune (b) 49.60 61.85
Li et al. [6] (c) 49.07 61.16

Adverarial
Lan et al. [17] (d) 49.13 61.80
Completely Shared (e) 49.57 61.48
(e) + GAN on Embedding (f) 51.10 63.11
(e) + GAN on Attention (g) 48.30 61.11

columns show the evaluation on the testing sets of Text-
SQuAD and Spoken-SQuAD.

It is clear that the performance drops a lot when the train-
ing and testing data mismatch, indicating that model train-
ing on ASR hypotheses can not generalize well on reference
transcriptions. The performance gap is nearly 20% F1 score
(72% to 55%). The row (c) shows the improved performance
when testing on S-SQuAD due to the transfer learning via
fine-tuning.

5.3.2. Effectiveness of Adversarial Domain Adaptation

To better demonstrate the effectiveness of the proposed
model, we compare with baselines and show the results in
Table 2. The baselines are: (a) trained on S-SQuAD, (b)
trained on T-SQuAD and then fine-tuned on S-SQuAD, and
(c) previous best model trained on S-SQuAD [6] by using
Dr.QA [21]. We also compare to the approach proposed by
Lan et al. [17] in the row (d). This approach is originally
proposed for spoken language understanding, and we adopt
the same approach on the setting here. The approach models
domain-specific features from the source and target domains
separately by two different embedding encoders with a shared
embedding encoder for modeling domain-general features.
The domain-general parameters are adversarially trained by
domain discriminator.

Row (e) is the model that the weights of all layers are tied
between the source domain and the target domain. Row (f)
uses the same architecture as row (e) with an additional do-
main discriminator applied to the embedding encoder. It can
be found that row (f) outperforms row (e), indicating that the
proposed domain adversarial learning is helpful. Therefore,
our following experiments contain domain adversarial learn-
ing. The proposed approach (row (f)) outperforms previous
best model (row (c)) by 2% EM score and over 1.5% F1 score.
We also show the results of applying the domain discriminator
to the top of context query attention layer in row (g), which
obtains poor performance. To sum it up, incorporating adver-
sarial learning by applying the domain discriminator on top

Table 3. Investigation of different layer tying mechanisms,
where Xmeans that weights of the layer are tied between the
source model and the target model. (L1: embedding encoder,
L2: context query attention layer, L3: model encoder layer,
L4: output layer.)

Combination L1 L2 L3 L4 EM F1
(a) X X X X 51.10 63.11
(b) - X X X 50.25 62.41
(c) - - X X 49.72 61.97
(d) - X - X 48.83 61.80
(e) - X X - 51.09 62.97
(f) X - - X 49.01 61.40
(g) X - X - 49.28 61.71
(h) X X - - 49.61 61.72

of the embedding encoder layer is effective.

5.3.3. Which Layer to Share?

Layer weight tying or untying within the model indicates dif-
ferent levels of symmetric mapping between the source and
target domains. Different combinations are investigated and
shown in Table 3. The row (a) in which all layers are tied is
the row (e) of Table 2. The results show that untying context-
query attention layer L2 (rows (c, f, g)) or model encoder
layer L3 (rows (d, f, h)) lead to degenerated solutions in com-
parison to row (a) where all layers are tied. Untying both of
them simultaneously leads to the worst performance which is
even worse than the finetuning (row (g) v.s. (c) from Table 2).
These results imply that sharing the context-query attention
layer and the model encoder layer are important for domain
adaptation on SQA. We conjecture that these two layers ben-
efit from training on source domain data where there are no
ASR errors, so the QA model learns to conduct attention or
further reason well on target domain data with ASR errors.

Overall, it is not beneficial to untie any layer, because no
information can be shared across different domains. Untying
the embedding encoder L1 and the output layer L4 leads to
the least degradation in comparison to row (a).

6. CONCLUSION

In this work, we incorporate a domain discriminator to align
the mismatched domains between ASR hypotheses and refer-
ence transcriptions. The adversarial learning allows the end-
to-end QA model to learn domain-invariant features and im-
prove the robustness to ASR errors. The experiments demon-
strate that the proposed model successfully achieves superior
performance and outperforms the previous best model by 2%
EM score and over 1.5% F1 score.
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