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ABSTRACT

Proper response selection is an important challenge for a
meaningful multi-turn dialogue. To this end, not only the
coherence among the whole dialogue but also the interaction
between utterance in adjacent turns need to be properly em-
ployed as the context for response selection. In this paper,
we propose a deep hybrid network (DHN) to distill such con-
textual information. First, we match the response with each
utterance and filter internal noises with recurrent neural net-
works. Second, several deep convolutional blocks perform as
a feature extractor and output a matching vector to be fused
into a final matching score. During this period, complex
contextual information across the whole conversation can be
thoroughly blended and captured. The empirical study on
two commonly used public datasets has shown the proposed
model’s potential.

Index Terms— dialogue system, response selection,
multi-turn conversation, contextual features extraction, deep
hybrid network

1. INTRODUCTION

Implementing an intelligent dialogue system which could
converse with human-beings coherently is one of the most
important tasks for both humanism value and commercial in-
terests. Currently, intelligent dialogue systems can be roughly
classified into task-oriented systems (e.g. Cortana, Siri) and
open domain ones (e.g. Microsoft Xiaoice) [1], while for both
kinds of dialogue systems a fundamental challenge needs to
be appropriately solved to maintain the meaningfulness and
consistency of outputted responses [2, 3].

One of the promising solutions to this problem is the re-
trieval based approach, which intends to select the most rel-
evant instances from a history repository with regard to the
input in a conversation [4, 5]. This kind of approaches hy-
pothesizes that similar utterances, or question and answering
pairs, are probably happened in the previous conversations
[2]. Based on this assumption, earlier methods employed the
utterances in last input to retrieve possible responses in the
repository [4, 6]. Though this kind of methods is easy in
implementation, an intelligent dialogue system often has to

cope with multiple turns of conversation. As such recent re-
searchers have paid much attention to how to use all turns of
inputs to further refine the set of possible instances, which is
normally referred as multi-turn based response selection ap-
proaches [7, 2, 8].

When taking all utterances in the previous turns of the
conversation into account, it is found that different utterances
in different turns contribute unequally to final response se-
lection [8]. As such it is important to not only comprehen-
sively and properly model the relationship between utterances
in each turn and response candidates, but also consider the
correlation between utterances in adjacent turns in selecting
candidates [7, 5]. In this research, inspired by recurrent neu-
ral networks’ (RNN) capability to recognize sequential fea-
tures and also convolutional neural networks’ (CNN) ability
to model local information, we propose a deep hybrid network
(DHN) to match responses with regard to the all previous ut-
terances.

The proposed solution first matches every response can-
didate against all the utterances in each turn by utilizing RNN
to model sentences sequential information. After this step, for
each candidate, there will be its multi-turn context representa-
tion. Next, deep convolutional blocks will be used to extract
from such contextual representation and output a matching
vector to indicate the possible match degree. Afterward, the
matching vector will be further analyzed to generate a match-
ing score. Finally, all response candidates’ machine scores
will be sorted, and then a suitable response will be identified.
In the proposed framework, the combination of contextual
features with different gratuities could be implemented via
every convolution and pooling layer in CNN blocks, which
allows fully capturing the contextual information. The exper-
imental results on Ubuntu Corpus and Douban Conversation
Corpus demonstrated the proposed methods’ potential.

2. RELATED WORK

With the enormous progress made by modern neural-network-
based natural language processing techniques, building an in-
telligent dialogue system which could converse with human-
beings consistently is no longer just a fantasy [9, 4, 10].
Toward this end, various data-driven approaches have been
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proposed [10, 4, 2, 5, 9, 11, 12], in which modeling multi-
turn conversations are under the spotlight to utilize valuable
contextual information. To obtain responses based on their
informative context, Lowe et al. tried to concatenate the con-
text together and measure the relevance between the encoded
context and response representations [7]. Similarly Yan et
al. reformulate the context by selecting utterances according
to specific strategies [2], while Wu et al. match responses
via constructing word-level and segment-level similarity ma-
trixes between each utterance and response [8]. Different
from previous approaches, we employ RNN to capture se-
quential information inside each sentence and deep CNNs to
combine local semantics and accumulate contextual features
with attentional weights simultaneously [13, 14].

3. METHODOLOGY

3.1. Overview

The architecture of DHN is illustrated in Fig. 1, which can be
roughly divided into three parts, namely multi-turn context
representation, context-aware matching, and aggregation.

Given a dataset {〈s, r, y〉i}
N
i=1, where s represents a con-

versation context consisting of {uj}nj=1 as utterances and r is
the response candidate. The label y ∈ {0, 1} represents the
matching degree of s and r. We aim to learn a matching dis-
criminator g(s, r), which can point out the relevance between
any context and response.
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Fig. 1. Architecture of DHN

For each utterance in the context and a response candi-
date, DHN first represents them as word embedding matrixes,
namelyUi =

[
e1ui

, e2ui
, · · · , enui

ui

]
andR =

[
e1r, e

2
r, · · · , enr

r

]
,

where e is a d-dimensional word embedding vector. Then
DHN constructs the multi-turn context representation M ∈
RL×P×P via a representation module, where L is relevant to
the representation method, and P is the maximum sentence
length (zero-padding and truncating strategies are applied
here to convert all utterances to the same length). Besides,
each channel of M corresponds to the similarity relationship
between the relevant utterance and response.

The candidate’s context representation matrix M is then
fed into the context-aware matching module. Finally, the
matching vector m distilled by the matching module is ag-
gregated into a real-value number md ∈ [0, 1] through a
single layer perceptron, which indicates the matching degree
of the conversation context and the response candidate. We
employ RNN to model the sequential structure and reduce
noises inside each speech in the representation module and
deep CNNs to capture local semantics with various granu-
larities and combine contextual information flow across the
conversation with attentional weights.

3.2. Multi-turn Context Representation

In this part, the zero-padding and truncating strategies are uti-
lized to convert the size of Ui andR to the P×d size (P is the
padded length and d is the word embedding’s dimensionality).
Then a matching matrix is built for each utterance-response
pair via the following operations:

Mui,r = Ui · S1 ·RT (1)

We set the coefficient matrix S1 to be identity matrix in
our experiments. Note that Mui,r ∈ RP×P . Besides, we
apply a RNN to capture internal coherence and filter noises
in Ui and R, and transform them into Ūi and R̄. And Ūi =[
z1ui

, z2ui
, · · · , znui

ui

]
could be formulated as:

ztui
= W1 · σ

(
W2e

t
ui

+W3z
t−1
ui

+ b1
)

+ b2 (2)

here W1,W2,W3 and b1, b2 are trainable parameters, and
σ (·) is a sigmoid activation function. R̄ is also represented
in a similar way. Then the matching between Ūi and R̄ is
computed via:

M̄ui,r = Ūi · S2 · R̄T (3)

Note that S2 is a trainable linear transforming matrix.
Then all matching matrixes are stacked following the order
of the speeches in the conversation to build the multi-turn
context representation M ∈ RL×P×P :

M =
[
Mu1,r; · · ·Mun,r; M̄u1,r; · · · M̄un,r

]
(4)

Notice that here L is equal to two times of the maxi-
mum dialogue length (we truncate longer conversations and
pad zeros into shorter ones to convert all conversations to
the same length). In this manner, each channel of M corre-
sponds to an utterance with supervision from response (Mui,r

or M̄ui,r) (Besides this method, we explore other representa-
tion approaches which concatenate or add Ui, Ūi and R, R̄
together with weights but the results are relatively worse).

3.3. Context-aware Matching

The CliqueNet architecture [15] introduces recurrent feed-
backs into the DenseNet architecture [16] to further enhance
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the gradient flow among layers. Derived from CliqueNet, we
design the context-aware matching module which consists of
several convolutional blocks. Each block could be further
divided into two stages. Layers in the first stage take the
concatenation of former layers’ output as input feature-maps,
while the output feature-maps of ith layer in the second stage
can be formulated as:

xi,2 = g

(∑
l<i

Wli ∗ xl,2 +
∑
m>i

Wmi ∗ xm,1

)
(5)

were g is a non-linear transformation function which im-
plements the joint operation BN − ReLU − Convk3×3, ∗
represents convolutional operation with parameters matrix
Wij , and ,+ denotes concatenation operation. BN,ReLU
and Convk3×3 refer to the batch normalization operation [17],
ReLU activation function [18] and a convolutional layer with
k kernels of 3 × 3 size respectively. Additionally, layers
in the first stage also feed their inputs to the function g(·).
Note that in the second stage, every layer is updated based
on former layers in the second stage and following layers in
the first stage, and Wij decides weights between the ith and
jth layer. With this method, a spatial attention mechanism
is brought into the deep convolutional blocks. Namely, the
most important contextual information in different turns is
left behind with higher weights.

We implement three identical blocks in our experiments.
Each block concatenates its input and second stage feature-
maps as block features. All block features form the matching
vector m after global pooling. Every second stage feature-
maps function as input to the next block after being processed
by a transition layer, which consists of BN −ReLU −AP −
Convk1×1 operations (AP is an average pooling layer).

3.4. Aggregation

In this part, a fully-connected layer with softmax is employed
to translate the matching vector m into a probability distri-
bution. The values of the probability distribution denote the
scores of “not matching” and “matching”, respectively. The
“matching” score is the final matching degree md ∈ [0, 1].
Thus, we utilize the binary cross-entropy (a special case of
multi-class cross-entropy) as our loss function:

L = −
N∑
i=1

[yilog (g (si, ri)) + (1− yi) log (1− g (si, ri))]

(6)
where yi is the true label of samples, and g (si, ri) is the pre-
dicted matching degree (matching score).

4. EXPERIMENTAL STUDY

4.1. Datasets

To evaluate the proposed method’s potential, we conduct ex-
periment study on two public datasets, i.e., Douban Conver-

sation Corpus and Ubuntu Corpus, which are typical open-
domain and domain-specific datasets, respectively.

Douban Conversation Corpus is a Chinese corpus and
published in 2017 [8], which consists of 1 million train-
ing data, 50 thousand validation data, and 10 thousand test
data. The negative responses in training and validation set
are randomly sampled, and the ratio of positive over neg-
ative responses is 1 : 1. In test set, there are 1 positive
candidate and 9 negative ones for each context, and neg-
ative responses are crawled from Sina Weibo via Lucene
(https://lucenenet.apache.org/), and their la-
bels are manually annotated.

Ubuntu Corpus is crawled from the Ubuntu Forum [7].
The Ubuntu Corpus (English dataset) is composed of one mil-
lion training samples, 0.5 million instances in both validation
and test sets. The ratio of positive over negative responses is
1 : 1 for the training set and 1 : 9 for validation and testing,
and all the negative responses are randomly sampled.

4.2. Experimental Settings

To evaluate the proposed method, we follow the configura-
tion in [8] and employ Rn@k (recall at position k in n can-
didates), MAP (Mean Average Precision), MRR (Mean Re-
ciprocal Rank) and P@1 (Precision-at-one) to evaluate our
experimental results.

The proposed model is implemented on Tensorflow [19]
and we employ word2vec [20] to initialize the word embed-
ding with the dimensionality of 200. Parameters are updated
by stochastic gradient descent with Adam algorithm [21]. The
initial learning rate, β1 and β2 of Adam are 0.001, 0.9 and
0.999 respectively. The training batch size is set to 60 in our
experiments. The maximum dialogue and sentence length are
set to 10 and 50 for both datasets respectively. Zero-padding
and truncating strategies are applied. Other structural param-
eters, including the kernels per layer k and the number of total
layers L, are tuned to select the best model. All models are
trained and tested on a GTX 1060 platform. We select and
compare our framework against the most representative base-
lines, including single-turn approaches: LSTM and biLSTM,
MV-LSTM [22], Match-LSTM [6] and Attentive-LSTM [23].
Besides, other advanced multi-turn frameworks are also em-
ployed, e.g., DL2R [2], Multi-view [5], and SMN [8].

4.3. Results and Discussion

Table 1 lists the evaluation results and marks the best result in
boldface. As shown in this table, our model outperforms all of
the baselines, especially on the Douban Conversation Corpus.
Moreover, due to the storage limit of our device, models with
higher structural parameters (with better performance gener-
ally) cannot be trained. Nevertheless, the performance of our
framework illustrates the significance of utilizing multi-turn
context and modeling the supervision from responses to ut-
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Table 1. Comparison results on two public datasets

Model Ubuntu Corpus Douban Conversation Corpus
R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2 R10@5

LSTM 0.638 0.784 0.949 0.485 0.537 0.320 0.187 0.343 0.720
biLSTM 0.630 0.780 0.944 0.479 0.514 0.313 0.184 0.330 0.716
MV-LSTM 0.653 0.804 0.946 0.498 0.538 0.348 0.202 0.351 0.710
Match-LSTM 0.653 0.799 0.944 0.500 0.537 0.345 0.202 0.348 0.720
Attentive-LSTM 0.633 0.789 0.943 0.495 0.523 0.331 0.192 0.328 0.718
DL2R 0.626 0.783 0.944 0.488 0.527 0.330 0.193 0.342 0.705
Multi-view 0.662 0.801 0.951 0.505 0.543 0.342 0.202 0.350 0.729
SMN 0.726 0.847 0.961 0.529 0.569 0.397 0.233 0.396 0.724
Our proposed 0.733 0.852 0.961 0.562 0.621 0.432 0.241 0.407 0.754

terances (compared with single-turn approaches) and the va-
lidity of employing RNN-CNN hybrid structure to filter inter-
nal noises, distill local semantics and fully capture contextual
information flow (compared with multi-turn methods).

In the following paragraphs we would like to analyze the
influence of different hyperparameters on our model’s perfor-
mance to help understand the internal mechanism of DHN.
Then we discuss the major reasons which lead to wrong pre-
dictions to designate the directions of future researches.

Quantity analysis We investigate how our model per-
forms across different maximum dialogue and sentence
length. Figure 2 illustrates the changes of Rn@k on the
Douban Conversation Corpus. As demonstrated, our model
performs stably with both long and short context. Addition-
ally, longer context results to a relatively better performance
generally, which proves the effectiveness of richer contextual
information. Thus, we set the maximum dialogue length to
10 to balance performance and computation burden. Simi-
larly, our model performance increases steadily with longer
sentences, but we set the maximum sentence length to 50 in
our experiments to maintain both efficiency and effectivity.

Table 2. Results with various structural parameters

Setting R10@1 R10@2 R10@5

L=6 k=12 0.217 0.371 0.716
L=12, k=12 0.232 0.385 0.706
L=12, k=24 0.241 0.407 0.754

Structural parameters tuning As shown in Table 2,
higher structural parameters result in better performance gen-
erally. However, increasing L=6, k=12 to L=12, k=12 leads
to a slight reduction on the R10@5 metric, which implies that
maintaining the balance between k and L is also of great sig-
nificance. Due to the limit of our device, models with the size
bigger than L=12, k=24 could not be trained. Thus, we select
the best configurations (L=12, k=24) in our experiments.

Error analysis To further improve the performance of
DHN, we carefully analyze the failing cases and classify them

Maximum dialog length R10@1 R10@2 R10@5 Maximum  R10@1 R10@2 R10@5
2 0.13 0.247 0.577 5 0.112 0.229 0.514
3 0.138 0.264 0.605 10 0.169 0.311 0.631
5 0.167 0.301 0.664 15 0.196 0.331 0.685
8 0.205 0.39 0.716 30 0.24 0.407 0.743

10 0.246 0.401 0.743 40 0.245 0.4 0.753
12 0.241 0.407 0.754 60 0.241 0.407 0.754
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Fig. 2. Changes of performance across different maximum
dialogue and sentence length

into two categories. 1) Improper responses: there are multi-
ple suitable response candidates or no appropriate candidates,
which lead to the instability of the Rn@k metrics. 2) Logical
error: the predicted response may be logically contradictory
about former information. Introducing adversarial samples
and expert labeling into the training procedure would help re-
solve the two issues. However, this is generally not low-cost.
Hence more automatic techniques need to be explored.

5. CONCLUSION AND FUTURE WORK

In this paper, we investigate the task of selecting suitable re-
sponse candidates for the multi-turn cpnversation via the deep
hybrid network, which use RNN to construct a candidate’s
context representation and then use CNN to further study the
candidate’s suitability from adjacent utterance’s perspective.
Experimental study on two public datasets demonstrated that
our proposed method can outperform all baselines and the
comprehensive discussion about our method’s mechanism is
discussed. In the future, we would study how to model con-
textually logical consistency and further explore better frame-
works which perform closer to human evaluation without ex-
pensive expert labeling in the training procedure.
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