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ABSTRACT

Topic detection for conversational telephone speech (CTS) is
addressed in this paper. The low accuracy of automatic speech
recognition (ASR) will cause severe performance deteriora-
tion for topic detection. To make up for this, we adopt two
ASR systems, HMM-BiLSTM and CTC systems, to provide
complementary information for topic detection. After obtain-
ing two sets of different recognized transcriptions, a CNN
with multi-stream inputs is trained, and the pooling layer
serves as document representations. Finally, element-wise
summation of document representations from two streams is
used as distributed representations of the documents, which
are fed into agglomerative hierarchical clustering (AHC) al-
gorithms to obtain clustering results. The experiments on a
Japanese speech corpus demonstrate that the proposed ap-
proach can significantly improve the performance of topic
detection.

Index Terms— topic detection, consensus analysis, ag-
glomerative hierarchical clustering

1. INTRODUCTION

Topic detection (TD) is a task designed for finding the set of
most prominent topics in a collection of text or spoken doc-
uments, and it is a fundamental task in information manage-
ment. State-of-the-art topic detection for speech includes two
sub-systems. The first is a typical automatic speech recog-
nizer (ASR), which is used to transcribe spoken utterances
into text. The second sub-system is a conventional text-based
TD sub-system. Both of these sub-systems have an important
impact on the final TD performance.

In recent years, impressive progress has been made in
the fields of both ASR and natural language processing
(NLP). In terms of ASR, deep learning has replaced the
Gaussian mixture model (GMM) as a mainstream acoustic
modelling method. The most representative architecture is
long short-term memory (LSTM) [1, 2].The LSTM combined
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with hidden Markov models (HMMs) has become the main-
stream in the ASR field. Currently, end-to-end approaches
have become popular research topics. Compared with tra-
ditional HMM/neural network systems, the end-to-end ap-
proach avoids the need for linguistic resources such as a pro-
nunciation dictionary or phonetic context-dependency trees,
which greatly simplifies the training and decoding process
[3, 4, 5, 6, 7]. One of the most representative end-to-end sys-
tems is the connection temporal classification (CTC)-based
framework [7].

For the topic detection task, documents are first repre-
sented as fixed-dimensional feature vectors, and then clus-
tering algorithms, such as the agglomerative hierarchical
clustering (AHC) algorithm [8], are performed to partition
the documents into groups. The most widely used approach
for document representation is term frequency-inverse doc-
ument frequency (TF-IDF) [9]. Furthermore, generative
statistical models are proposed to capture the latent seman-
tic structure of documents. Typical methods include latent
semantic analysis (LSA) [10], probabilistic latent semantic
analysis (PLSA) [11] and latent Dirichlet allocation (LDA)
[12]. Neural network-based methods, such as neural autore-
gressive density estimators (DocNADE) [13], have also been
investigated for document representations. Moreover, con-
volutional neural networks (CNNs) [14, 15] are employed to
capture n-gram features and construct document representa-
tions. However, topic detection is essentially an unsupervised
task, and the lack of predefined labels is a problem for topic
detection. To enhance the quality of pseudo-labels for model
training, Chen et al. used consensus analysis to select training
samples [16].

In this paper, we investigate the topic detection task on
conversational telephone speech (CTS). Since topic detection
relies fundamentally on matching words and phrases among
different transcript documents, the accuracy of TD will be in-
evitably affected by speech recognition errors. Different ASR
systems can provide complementary information for topic de-
tection. Word-level transcription can provide more semantic
information, but it cannot solve the out-of-vocabulary (OOV)
problem. Some OOVs contain very important discriminative
topic information. On the other hand, the grapheme system
can partly solve the OOV problem. In this work, we take two
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ASR systems, based on words and graphemes, to transcribe
speech. After obtaining two sets of transcriptions, a CNN
with multi-stream inputs is trained, and the pooling layers of
the trained CNN serve as a distributed representation of the
documents. Finally, we use the AHC algorithm on the docu-
ment representations. Experiments are carried out on a spon-
taneous Japanese CTS corpus, and the results demonstrate the
effectiveness of the proposed method. The contribution of this
paper is as follows.

1. We propose a CNN to integrate two different ASR rec-
ognized results. The proposed CNN has two different sets of
input nodes: the embedding matrix of the words and the em-
bedding matrix of the graphemes. In the training process, in-
stead of concatenating the embedding of different recognized
tokens as CNN inputs, we feed the CNN with them separately.

2. We use the average-pooling layer before the output
nodes as a document representation. We also separately feed
the CNN with the embedding of different recognized tokens
to extract two sets of document representations. Instead of
concatenating these two sets of document representations, we
use the elementwise summation of two vectors to obtain the
final distributed representation of documents for topic detec-
tion.

The rest of this paper is organized as follows: Section 2
provides a detailed description of the topic detection system,
especially the multi-stream training framework. Then, Sec-
tion 3 presents our experimental setup and other details, in-
cluding the experimental results. Finally, the discussion and
conclusion are presented in Section 4.

2. PROPOSED METHODS

In this section, we will discuss the proposed multi-stream
CNN framework, especially the training and document rep-
resentation extraction procedures. The overall architecture is
depicted in Fig.1. The process can be divided into the follow-
ing three steps.

2.1. ASR

As mentioned above, we adopt two totally different ASR sys-
tems to provide complementary information. The first adopts
HMM-BiLSTM as an acoustic model and tied tri-phones as
modelling units; a 3-gram word-based language model is
used in the decoding process. The second adopts the CTC
acoustic model and graphemes as modelling units; a 3-gram
grapheme-based language model is used in the decoding
process.

2.2. Consensus analysis for coarse label generation

Topic detection has no prior label information and is intrin-
sically an unsupervised clustering task. We use consensus
analysis to generate pseudo-labels and select documents with

Fig. 1: Architecture of the proposed model.

high confidence for the CNN training [16]. In the consensus
analysis, we use the recognized documents of the HMM sys-
tem, which provides more reliable topic information than the
CTC system. All recognized documents are first converted
into low-dimensional vectors through unsupervised methods,
such as LDA, LSA or DocNADE. Then, we adopt the AHC
algorithm to generate cluster labels for all documents. Since
consensus analysis is used, two sets of vectors (such as LDA
and DocNADE) are adopted to obtain two different clustering
labels C1 and C2 . With the obtained clustering labels C1 and
C2 , consensus analysis is employed on C1 and C2 to select
consensus samples. First, a mapping function is employed to
map each cluster label in C1 to the best-matched cluster label
in C2. Second, for a spoken document di , if the clustering la-
bel in C1 is equal to the after-mapping cluster label in C2 , di
belongs to the consensus sample set; otherwise, di will not be
used for CNN training. A detailed description of consensus
analysis is available in [16].

Fig. 2: Architecture of the multi-stream training framework.
In this paper, we perform the convolutions over the

embedded vectors using multiple filter sizes, for example,
sliding over 3, 4 or 5 words (or graphemes) at a time.

2.3. CNN with multi-stream inputs

As depicted in Fig.2, the CNN architecture in this work con-
sists of five parts: an input embedding layer, a convolutional
layer, a pooling layer, a fully connected layer and a softmax
layer. The major difference between our model and conven-
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tional CNNs is the input layers. The proposed model has two
sets of different inputs: one is used for embedding the matrix
for words, and the other is used for graphemes. The output
layer is the pseudo-supervised labels generated by consensus
analysis in Section 2.2. All other layers are the same as con-
ventional CNNs.
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represent the recognized results of the HMM and CTC sys-
tems, respectively, for a training document di. We first map
the results to embedding matrices, MWi and MGi [17]. In-
stead of concatenating the embedding matrices of MWi and
MGi , we feed them into the CNN separately in the training
procedure. This means that the training samples can be dou-
bled and the dimensions of MWi and MGi can be different.
For example, in the first iteration, we choose the word em-
bedding input of mini-batch training data MW , and in the
second iteration, grapheme embedding input MG will be uti-
lized. Convolution operation is applied to the embedding ma-
trix:

c = f(Wconv ∗M+ b) (1)

where Wconv ∈ Rn×h×k are the convolution weights, M
can be either MW or MG, b is the bias and f is a non-linear
function. n is the number of feature maps, h is the filter width,
and k is the dimension of word vectors and grapheme vectors.
We then apply an average-over-time pooling operation over
c, so both word and grapheme documents can be converted to
the same dimensional vectors after the pooling layer. When
the training data are from the word embedding branch, the
loss of the mini-batch data is calculated as:

O = − logP (ylabel|W) (2)

where P (ylabel|W) is the predicted distribution. Compared
with equation (2), the objective of the grapheme embedding
branch is presented as equation (3), with an adjustable param-
eter α, where 0 6 α 6 1 .

O = −α logP (ylabel|G) (3)

With the trained model, we can extract the document
representations of the document di, which are the output
of the pooling layer. Since there are two inputs, the word
and grapheme embedding matrices, each input can obtain one
vector, denoted as v1 and v2. Then, we apply an element-wise
summation of the two vectors to obtain the final distributed
representation of one document.

v = v1 ⊕ v2 (4)

where ⊕ is the element-wise summation operator. After ob-
taining the distributed representation of all documents, the
AHC algorithm can be applied to categorize the documents
into different topics.

3. EXPERIMENT

In this section, we describe the datasets and the topic detec-
tion performance of the proposed approach.

3.1. Database

The experiments are conducted on two Japanese CTS corpora
collected by the Speechocean Corporation, King-ASR-222-2
and King-ASR-222-3. The King-ASR-222-2 corpus is used
to build the ASR systems, while all the topic detection ex-
periments are conducted on the King-ASR-222-3 corpus.The
King-ASR-222-2 corpus contains 120-hour spontaneous dia-
log speech data. In the experiments, we randomly selected
105 hours and 12 hours of speech data as the training and
cross-validation sets. The King-ASR-222-3 corpus consists
of 7435 recorded telephone conversations with approximately
200 hours of speech in total. This corpus contains 21 topics,
and each conversation is assigned to a specific topic. We use
the King-ASR-222-3 corpus as the ASR test set, and the rec-
ognized results are fed into the topic detection modules.

3.2. ASR modules

The Kaldi [18] and Eesen [19] toolkits are used in the HMM
and CTC ASR systems, respectively. Both systems adopt
BiLSTM networks, which contain 3 layers with 1024 nodes
in each layer. The acoustic feature is 108-dimensional filter-
bank features (36 filter-bank features, delta coefficients, and
delta-delta coefficients) with mean and variance normaliza-
tion. For the HMM system, tied tri-phones (senones) are se-
lected as acoustic model units. There are 237 monophones
and 13566 senones in acoustic modelling, and a 3-gram word-
based language model is used in the decoding procedure. For
the CTC system, we take 2488 different graphemes (hiragana,
katakana and kanji) plus blank as 2489 output nodes in the
acoustic model. A 3-gram grapheme-based language model
is used in the decoding procedure. Word error rate (WER)
and character error rate (CER) are used as evaluation criteria
for the HMM and CTC systems, respectively. Table 1 shows
the experimental results of the related systems.

From Table 1, it can be seen that the accuracies of both
of these systems are not very satisfactory. The reason may be
the low signal-to-noise ratio (SNR), channel mismatch and
spontaneous speaking style.

3.3. Topic detection

With the HMM- (word documents) and CTC-recognized re-
sults (grapheme documents), topic detection experiments are
conducted on the King-ASR-222-3 corpus. The number of
clusters is set to 21 in our experiments, and we evaluate the
clustering performance by two metrics, the accuracy (ACC)
and the normalized mutual information (NMI) [20].

3.3.1. Unsupervised models

We first conduct the clustering algorithm on the document
representations inferred by conventional unsupervised meth-
ods. Three methods, LSA, LDA and DocNADE, are com-
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Table 1: The ASR systems with WER or CER on
King-ASR-222-3 corpus

ASR system WER%(CER%)

HMM-BiLSTM 44.91%
CTC-BiLSTM 45.92%

Table 2: The performance of the unsupervised model

Model
word grapheme

ACC NMI ACC NMI

LDA 0.4260 0.3656 0.2779 0.2111
LSA 0.4296 0.3767 0.3198 0.2459
DocNADE 0.4576 0.3732 0.2667 0.1952

pared.In LSA, we retain the top 60 singular values to form the
new subspace for both word documents and grapheme docu-
ments. In LDA, the number of latent topics is set to 60 and
40 for word and grapheme documents, respectively. In Doc-
NADE, the hidden layer size is set to 40, and the sigmoid is
chosen as the activation function for both word and grapheme
documents.

The performances of the related systems are shown in Ta-
ble 2. The performance based on the grapheme documents
is obviously worse than that based on the word documents,
which means word-based systems retain much more semantic
information from the documents.

3.3.2. CNNs trained with consensus analysis samples

There are 7435 documents in the King-ASR-222-3 corpus.
After consensus analysis, the number of documents for LDA-
DocNADE and LSA-DocNADE is 3296 and 3215 respec-
tively. Consensus analysis only selects the samples with high
confidence for CNN training.

We implement the CNNs by TensorFlow [21]. The input
feature lengths for CNNs are set to 270 for word docu-
ments and 700 for grapheme documents. In the convolu-
tion layer, different filter windows of 3, 4, and 5 with 50
feature maps each are adopted, and we also use a dropout
rate of 0.2 before the fully connected layer. The word and
grapheme-embedding vectors are initialized independently
with 300-dimensional pre-trained word2vec vectors. All
of the pre-trained word and grapheme vectors are updated
along with other model parameters by Adam during the CNN
training [22]. The last pooling layer of the trained CNN is
used as a document representation. Depending on the inputs,
each document can extract two vectors (word and grapheme
vectors). These two vectors can be added using equation
(4) (denoted Vector-A), and they can also be concatenated
(denoted Vector-C) to form a high vector.

Table 3 shows topic detection based on these four types of
vectors. The CNN system can achieve noticeably better per-
formance than the unsupervised systems in Table 2. Further-
more, the Vector-A system can achieve the best performance,

Table 3: The performance of multi-stream inputs

Model
LDA-DocNADE LSA-DocNADE
ACC NMI ACC NMI

Word 0.5087 0.4340 0.5029 0.4342
Grapheme 0.3806 0.3431 0.4300 0.3555
Vector-C 0.5243 0.4631 0.5190 0.4623
Vector-A 0.5712 0.5245 0.5578 0.5158

Table 4: The performance of single-stream inputs

Model
LDA-DocNADE LSA-DocNADE
ACC NMI ACC NMI

W-CNN 0.4909 0.4348 0.4912 0.4209
G-CNN 0.2449 0.1882 0.2616 0.1926
Vector-WG 0.4929 0.4399 0.4897 0.4428

Fig. 3: The topic detection performance of the Vector-A
system with different α.

with 6.25% absolute improvements for ACC and 9% for NMI.
In the experiments, the α in equation (3) controls the im-

pact of the grapheme documents on model training. When α
is set from 0.1 to 1.0 with an interval of 0.1, the topic detection
performances of the Vector-A system are listed in Fig.3. As
presented in Fig.3, performance varies with different weights
α, especially for ACC. The system obtains the best perfor-
mance for both ACC and NMI with an α of 0.1.

To test the effectiveness of the proposed method, we
build two contrastive CNNs with only a single-stream in-
put, denoted W-CNN and G-CNN, depending on the word
or grapheme document input. All other configurations are
the same as multi-stream systems. Additionally, the concate-
nation of the vectors (denoted Vector-WG) extracted from
W-CNN and G-CNN is applied to improve the performance.
Comparing Table 4 with Table 3, the performances of con-
trastive CNNs are not satisfactory.

4. CONCLUSION

We propose a multi-stream CNN training framework to fuse
the word and grapheme recognized transcriptions in this pa-
per. Despite different inputs, high-level parameters can be
shared in model training and final document representation
extraction. The experimental results demonstrate the effec-
tiveness of the proposed framework.
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