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ABSTRACT

Punctuation restoration is a post-processing task of automatic
speech recognition to generate the punctuation marks on un-
punctuated transcripts. This paper proposes a deep recurrent
neural network architecture with layer-wise multi-head atten-
tions towards better modelling of the contexts from a vari-
ety of perspectives in putting punctuations by human writ-
ers. The experimental results show that our proposed model
significantly outperforms previous state-of-the-art methods in
punctuation restoration performances on IWSLT dataset.

Index Terms— punctuation restoration, deep neural net-
work, neural attention mechanism

1. INTRODUCTION

Punctuation marks play an important role in written lan-
guage to organize the grammatical structures and to clarify
the meaning of sentences. Consequentially, the usage of
punctuations greatly affects to text readabilities and under-
standabilities for both human and machine readers. However,
many automatic speech recognition (ASR) systems provide
just a sequence of raw words with no punctuation as the tran-
script of a given speech input. Punctuation restoration aims
to generate the punctuation marks from the unpunctuated
ASR outputs, which is towards a better representation of the
recognition results themselves and a higher availability of the
structural features for downstream language understanding
tasks based on the ASR outcomes.

While various approaches using language model [1],
transition-based dependency parsing [2], and machine tran-
sition [3, 4] have been studied for punctuation restoration,
the most common way to tackle this problem is defining
it as a sequence labelling task to predict the punctuation
label yt for the t-th timestep in a given word sequence
X = {x1 · · ·xt · · ·xT }, which is formulated as follows:

yt =

 c ∈ C if a punctuation symbol c is located
between xt−1 and xt,

O otherwise,

t xt yt t xt yt
1 so O 12 like O
2 if ,COMMA 13 well ?QMARK
3 we O 14 i ,COMMA
4 make O 15 think O
5 no O 16 you O
6 changes O 17 probably O
7 today O 18 already O
8 what ,COMMA 19 have O
9 does O 20 the O

10 tomorrow O 21 picture O
11 look O 22 </s> .PERIOD

Fig. 1: Example of punctuation restoration

where C is a closed set of punctuation symbols including
‘comma’, ‘period’ and ‘question mark’.

Fig. 1 shows an example word sequence annotated with
the ground-truth punctuation labels which come from a wide
variety of common senses by human writers. For example,
the decisive signal for inserting a comma varies according
to its contexts. While the commas at t = 2 and 14 can be
determined mostly by just the previous word at t = 1 and
13, the other one at t = 8 requires longer-term contexts to
make a proper decision to place it at the boundary between
two adjacent clauses. The other punctuation types, period and
question mark, are nearly located at the end of each sentence.
Thus, the model is supposed to find the sentence boundaries
at t = 13 and 22 which can be detected based on short-term
local patterns only. But the differentiation between period and
question mark only can be done with the long-term dependen-
cies from the beginning of each clause at t = 8 and 14.

Like other sequence labelling problems, conditional ran-
dom fields (CRFs) had been the most successful solution for
punctuation restoration in the earlier studies [5, 6, 7]. But, re-
cently, deep neural network models have broken the records
for this task’s performances by using multiple fully-connected
hidden layers [8], convolutional neural networks (CNNs) [8],
recurrent neural networks (RNNs) [9, 10], and RNNs with
neural attention mechanisms [11].
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Fig. 2: Stacked RNNs with layer-wise multi-head attentions
for punctuation restoration

In this work, we propose a new neural network architec-
ture for punctuation restoration. Our model basically learns
sequential contexts using RNNs followed by an attention
mechanism to focus on the relevant contexts at each time
step. This work has the following three main contributions
from the previous studies towards improving the model’s
capabilities in taking various aspects into account to predict
punctuations. Firstly, the model encodes the contexts not just
by a single hidden recurrent layer as in [9, 11, 10], but by the
stacked architecture with multiple recurrent layers to learn
more hierarchical aspects. Then, neural attentions are applied
not only on the top layer, but also on every intermediate hid-
den layer to capture the layer-wise features directly from each
level of the learned hierarchy. Above all, the attentions for
each layer are also diversified by multi-head attentions [12]
instead of a single attention function used in [11].

2. METHOD

Our model for punctuation restoration is based on the stacked
RNNs with layer-wise multi-head attentions (Fig. 2). Firstly,
each word xt in a given input sequence X is represented as a
d-dimensional distributed vector xt ∈ Rd. This word embed-
ding layer can be learned from scratch with random initial-
ization or fine-tuned from pre-trained word vectors [13, 14]
during training the entire network.

Then, the sequence of the embedded word vectors is fed
into bi-directional RNNs. Unlike the previous work just with
a single recurrent layer [9, 11, 10], our model has a deeper
architecture by stacking multiple recurrent layers on top of
each other to make each layer to learn various contexts from
a different perspective. Gated recurrent units (GRUs) [15] are
used to get each hidden state, as follows:

−→
h i

t =

 GRU
(
xt,
−→
h 1

t−1

)
if i = 1,

GRU
(
hi−1
t ,
−→
h i

t−1

)
if i = 2, · · ·n,

where
−→
h i

t ∈ Rd is the forward state from the beginning of
the sequence to the t-th time step on the i-th recurrent layer
and n is the total number of bi-directional recurrent layers.
The backward state

←−
h i

t is computed also with the same way
but in the reverse order from the end of the sequence T to t.
Both directional states are concatenated into the output state
hi
t =

[−→
h i

t,
←−
h i

t

]
∈ R2d to represent both the preceding and

following contexts together.
The top-layer outputs [hn

1 , · · · , hn
T ] are forwarded to a

uni-directional recurrent layer with neural attention mecha-
nisms, as in [11]. The hidden state st also comes from GRU,
as follows:

st = GRU (hn
t , st−1) ∈ Rd,

which represents the temporal state at each time step and con-
stitutes a query to neural attentions. The attention mecha-
nism used in this model is based on scaled dot-product atten-
tion [12]

Attn (Q,K, V ) = softmax
(
QKT

√
d

)
V,

which is known to be more time- and memory-efficient than
additive attention [16] used in [11]. More specifically, multi-
head attentions [12] are applied for every layer separately to
compute the weighted contexts from different representation
subspaces, defined as follows:

f i,j = Attn
((

S ·W i,j
Q

)
,
(
Hi ·W i,j

K

)
,
(
Hi ·W i,j

V

))
,

where S = [s1; s2; · · · ; sT ] ∈ RT×d, Hi =
[
hi
1;h

i
2; · · · ;hi

T

]
∈

RT×2d, W i,j
Q ∈ Rd×d, W i,j

K ∈ R2d×d, and W i,j
V ∈ R2d×d.

Finally, the layer-wise multi-head attention outputs f i,j
t

for all i ∈ {1, · · · , n} and j ∈ {1, · · · ,m} at the t-th time
step are concatenated along with st and fed to the fully-
connected layer with softmax which generates the probabilis-
tic distribution over the punctuation labels

yt = softmax
([

st, f
1,1
t , · · · , fn,m

t

]
Wy + by

)
,

where Wy ∈ Rnm(d+1)×|C| and by ∈ R|C|.

3. EXPERIMENTS

3.1. Data

To demonstrate the effectiveness of our proposed model, we
performed experiments on the IWSLT dataset [17] which con-
sists of the English reference transcripts of TED Talks 1. We
used the same partition of the datasets as in [8] including
about 2.1M, 296k, and 13k words for training, development,
and test on reference, respectively.

1publicly available online at https://www.ted.com/talks
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Fig. 3: Comparisons of the punctuation restoration perfor-
mances of the stacked RNNs with layer-wise multi-head at-
tentions with different network configurations

3.2. Models

Based on the dataset, we compared several models built with
various combinations of different parameters and network
configurations, as follows:

• Number of recurrent layers: n ∈ {1, 2, 3, 4}

• Number of attention heads: m ∈ {1, 2, 3, 4, 5}

• Attended contexts: layer-wise for all the layers or only
on the top-layer

We also evaluated the impact of pre-trained word vectors in
initializing the word embedding layer in comparison with ran-
dom initialization. We used the 50-dimensional Glove [14]
vectors trained on Wikipedia and Gigaword datasets 2.

All the models were trained with Adam optimizer [18]
by minimizing the negative log likelihood loss. We set the
same hidden dimension d = 256 across all the components
except the word embedding layer initialized by pre-trained
vectors. In the training phase, we used mini-batch size of
128 and applied dropout on every layer with the rate of 0.5
for regularization. We stopped the training after 100 epochs.
Then, the best model was chosen based on the performance on
the development set evaluated in F-measure after each epoch.

3.3. Results

The evaluations were performed on precision, recall and F-
measure of the predicted labels to the ground-truth punctua-
tions on the test dataset. In addition, we also report the overall
slot error rate (SER) [19] of our proposed models compared
to the previous work on the same dataset.

2https://nlp.stanford.edu/projects/glove/

Fig. 3 compares the performances of the models under dif-
ferent settings. The simplest baseline with n = 1 and m = 1
is almost equivalent to T-BRNN presented in [11], since both
models have a single bi-directional recurrent layer with a sin-
gle attention head. The only difference is on the implemen-
tation details of attentions between additive method [16] in
T-BRNN and scaled dot-product attention [12] in ours. Our
baseline model achieved 0.633 in F-measure that is slightly
higher but very close to 0.631 reported as the performance of
T-BRNN in the original paper [11], which was to be expected
due to their structural similarities to each other.

On the other hand, all the newly proposed ideas in our
model contributed to improve the punctuation restoration ca-
pabilities significantly from the baseline. Firstly, the more the
number of bi-directional recurrent layers, the better perfor-
mance the models achieved under every combination of the
other experimental settings. For these deeper architectures,
given the same number of layers, the layer-wise attentions
were superior to the conventional method that attends only
to the top-layers. In addition, further gains came from the
diversified perspectives by our multi-head attention mecha-
nism. As a result, the layer-wise multi-head attentive model
with n = 4 and m = 3 achieved 0.672 in F-measure, which
was the best performance against all the other configurations
and 3.9% and 4.1% higher in absolute difference from our
baseline and T-BRNN, respectively.

As has been shown by the improvement from T-BRNN
to T-BRNN-pre in [11], our model performance was also
boosted by 1.4% in absolute score when its word embed-
ding layer was initialized not by randomization, but by the
pre-trained Glove vectors. Thus, the final best performance
achieved by our proposed model architecture in this experi-
ment was 0.686 in F-measure.

Table 1 shows the detailed results of our best models in
terms of per-punctuation and overall scores and also com-
pares them to the other neural network model performances
reported in recent studies on the same dataset. Overall, our
proposed models outperformed all the others for almost ev-
ery punctuation type and every metric. This was mainly due
to the largely increased recall which was expected as a ma-
jor benefit of leveraging various different aspects in capturing
contexts by our proposed model components.

Previously, the best performance of punctuation restora-
tion on the same dataset was achieved by Corr-BiRNN [10]
which was based on bi-directional RNNs jointly trained not
only on the punctuation, but also on the capitalization of each
word in a given sequence. However, our model outperformed
this previous state-of-the-art method by 3.7% in F-measure
and 4.7% in SER even with no consideration of capitaliza-
tion. Comparing to the best model only with the same punctu-
ation objective, our model DRNN-LWMA-pre achieved 4.2%
and 3.6% better in F-measure and SER, respectively, than T-
BRNN-pre [11] where the word embedding layers were ini-
tialized by pre-trained word vectors for both models.
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Table 1: Comparisons of the punctuation restoration performances with different models on test set with reference transcripts.
The higher precision (P), recall (R), and F-measure (F) scores and the lower slot error rate (SER), the better results in the task.
DRNN-LWMA and DRNN-LWMA-pre are our proposed models. The best score for each metric is highlighted in bold face.

COMMA PERIOD QUESTION OVERALL
Models P R F P R F P R F P R F SER
DNN-A [8] 48.6 42.4 45.3 59.7 68.3 63.7 - - - 54.8 53.6 54.2 66.9
CNN-2A [8] 48.1 44.5 46.2 57.6 69.0 62.8 - - - 53.4 55.0 54.2 68.0
T-LSTM [9] 49.6 41.4 45.1 60.2 53.4 56.6 57.1 43.5 49.4 55.0 47.2 50.8 74.0
T-BRNN [11] 64.4 45.2 53.1 72.3 71.5 71.9 67.5 58.7 62.8 68.9 58.1 63.1 51.3
T-BRNN-pre [11] 65.5 47.1 54.8 73.3 72.5 72.9 70.7 63.0 66.7 70.0 59.7 64.4 49.7
Single-BiRNN [10] 62.2 47.7 54.0 74.6 72.1 73.4 67.5 52.9 59.3 69.2 59.8 64.2 51.1
Corr-BiRNN [10] 60.9 52.4 56.4 75.3 70.8 73.0 70.7 56.9 63.0 68.6 61.6 64.9 50.8
DRNN-LWMA 63.4 55.7 59.3 76.0 73.5 74.7 75.0 71.7 73.3 70.0 64.6 67.2 47.3
DRNN-LWMA-pre 62.9 60.8 61.9 77.3 73.7 75.5 69.6 69.6 69.6 69.9 67.2 68.6 46.1
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Fig. 4: Visualization of sample attentions on the word sequence in Fig. 1. Each plot shows the pair-wise weights from the first
attention head of each layer in our best model. The x-axis and y-axis correspond to the words to be attended and to be predicted,
respectively. The higher the weight of a word pair, the darker the cell at their intersection.

Fig. 4 visualizes the attention weights by multiple heads
from our best model in restoring the punctuations on the input
sequence in Fig. 1. This generally shows that all the heads
mostly attended to the boundaries of syntactic units includ-
ing sentences and clauses, which is meant to be a typical
behavior of human writers in putting punctuations. Further-
more, each head produced a unique distribution of attending
to the contexts which is clearly differentiated from the others.
More specifically, the weights from the first layer attentions
(Fig. 4a) spread over the syntactic boundaries in the whole
sequence. In contrast, each of the others from higher layers
tends to have a specific focus on particular spots in the se-
quence. For example, Fig. 4b indicates high attentions at the
end of the clauses and sentences, while Fig. 4c and Fig. 4d
concentrate on the beginning of each syntactic unit. These
observations demonstrate the capabilities of our model in cap-
turing various aspects separately from each other by the dis-
tributed attentions across multiple layers and multiple heads
in the proposed architecture.

4. CONCLUSIONS

This paper presented a deep neural network architecture for
punctuation restoration. The model is based on stacked RNNs
with layer-wise multi-head attentions, which aims to better
incorporate various aspects into context learning. Experi-
mental results showed that the proposed model contributed to
improve the punctuation restoration performance on IWSLT
dataset with respect to previous state-of-the-art models.

Furthering this work, we have been considering the fol-
lowing two directions as our next steps: improving our model
by learning both from lexical and prosodic features; and ex-
ploring the effectiveness of our model for the joint prediction
of punctuation and capitalization.
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