A UNIFIED FRAMEWORK FOR FEATURE-BASED DOMAIN ADAPTATION OF NEURAL
NETWORK LANGUAGE MODELS

Michael Hentschel*!, Marc Delcroix!, Atsunori Ogawa’', Tomoharu Iwata', Tomohiro Nakatani'

*Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
michael.hentschel.mc5 @is.naist.jp
NTT Communication Science Laboratories, NTT Corporation, 2-4, Hikaridai, Seika-cho, Kyoto, Japan
{marc.delcroix, ogawa.atsunori, iwata.tomoharu, nakatani.tomohiro } @lab.ntt.co.jp

ABSTRACT

An important task for language models is the adaptation of general-
domain models to specific target domains. For neural network-based
language models, feature-based domain adaptation has been a popu-
lar method in previous research. Conventional methods use an adap-
tation feature providing context information that is calculated from
a topic model. However, such a topic model needs to be trained sep-
arately from the language model. To unify the language and context
model training, we present an approach that combines an extractor
network and a domain adaptation layer. The extractor network learns
a context representation from a fixed-size window of past words and
provides the context information for the adaptation layer. The benefit
of our method is that the extractor network can be trained jointly with
the language model in a single training step. Our proposed method
showed superior performance over conventional domain adaptation
with topic features on a dataset of TED talks with respect to perplex-
ity and word error rate after 100-best rescoring.

Index Terms— Domain adaptation, Topic model, Sequence
summary network, Recurrent neural network language model

1. INTRODUCTION

Domain adaptation of language models (LM) has been a task that
has seen some major interest in recent years. LMs are trained on
general-domain data but are usually applied to specific domains dur-
ing evaluation, which created the necessity for this research field.
The task of domain adaptation has already been studied with count-
based LMs [1, 2]. More recently, for neural network LMs (NN-LMs)
two paradigms have evolved. First, model-based adaptation that
adapts network weight by retraining with in-domain data [3, 4, 5].
Second, feature-based adaptation that uses an adaptation feature dur-
ing training and evaluation to provide domain information [6, 7, 8].
As adaptation features, topic features from a latent Dirichlet allo-
cation [9] (LDA) topic model have been commonly used. As pre-
vious research showed, these features are successful at providing
some global topic information to the network. Feature-based do-
main adaptation showed reductions in perplexity (PPL) and word
error rate (WER) in N-best rescoring, when applied to automatic
speech recognition (ASR).

Training LMs with feature-based domain adaptation requires
several steps. First, an LDA topic model has to be trained inde-
pendently from the LM. This requires text pre-processing and the
segmentation of the training data into documents. However, the
training data might not always have this segmentation. Second,
training the LDA topic model and extracting the features follows

978-1-5386-4658-8/18/$31.00 ©2019 IEEE

7250

a very different scheme. The LDA features are calculated from a
sliding window over the input text. In addition, the LDA features
are not optimised for LM adaptation.

Facing this scenario, it is desirable to have a more integrated ap-
proach for feature-based domain adaptation. This is our motivation
for UniFA, a Unified framework for Feature-based domain Adapta-
tion. UniFA is a combined approach for training the context repre-
sentation and the language model jointly in a single training step.
It does not require any text pre-processing and the training data can
be used in the same form for training the LM and the context repre-
sentation. The model learns to extract the context features itself to
improve word prediction.

To obtain a context representation in our framework, we use a
sequence summary network [10] (SSN). The SSN learns to extract a
context representation from a fixed-size window of past words. This
context representation is used in an adaptation layer to calculate the
adaptation parameters. We inserted an adaptation layer in the LM
before the output layer. In UniFA, this adaptation layer is realised
by feature-based learning hidden unit contributions [11, 12, 13] (fL-
HUC). In comparison with conventional LDA feature-based adapta-
tion, the advantage of using such approach is that the context repre-
sentation and the LM can be trained jointly by standard error back-
propagation in a single training step. In contrast to an LDA topic
model, our approach does not require any pre-processing of the text
data. The SSN and the LM can both be trained using the same data.

Our experimental results on a dataset of TED talks showed
that our proposed approach outperforms LDA feature-based domain
adaptation in terms of PPL and we achieve competitive WER results
in 100-best rescoring on the TED-LIUM dataset [14]. In addition
to analysing the model performance, we also give an insight into
the context representation and adaptation parameters learned by
the extractor network. As we show in the experimental result sec-
tion, there are similarities among the adaptation parameters learned
by each method but our proposed method is able to capture more
dynamic and local context.

2. LSTM-LM

NN-LMs based on recurrent networks are most common nowadays
and they showed to significantly outperform count-based LMs [15,
16]. In a recurrent neural network LM (RNN-LM), the input word
ID is encoded by a one-hot vector w(t). The input to the recurrent
layer x(t) is calculated using the word embedding matrix U™

z(t) = UM w(t). (1)

ICASSP 2019

w(t) U—v LSTM ——D w(t+1)
U™ v

h(t)

Fig. 1: A conventional LSTM-LM.
We use long short-term memory (LSTM) [17] units as recurrent units
in all our RNN-LMs as shown in Figure 1. The LSTM outputs h(t)
and keeps its state ¢(¢). The recurrent layer is followed by a linear
layer and the softmax function to calculate the probability for the
next word W (t + 1)

wt+1) = softmaX(V<W)h(t) + bw’w))7 2

where V) and 5V>") are the weight matrix and the bias vector of
the output layer, respectively.

3. PROPOSED UniFA ADAPTATION FRAMEWORK

Our proposed adaptation framework UniFA shown in Figure 2 con-
sists of two main parts, which we present in this section in more
detail:
1. A context extractor network, that learns a fixed-length context
representation from a window of past words

2. An adaptation layer, where the feature extractor network’s
output is used to adapt the LSTM cells’ output

3.1. Context Extractor Network

For our context representation, we use a context extractor network
based on a sequence summary network [10] (SSN) shown in Fig-
ure 2 (a). SSNs have been more common in speaker adaptation
for acoustic models and this is the first time to apply this technique
for LM adaptation. There are usually other more common methods
for context representations in natural language processing (see Sec-
tion 5), but we decided to use the SSN because it is computationally
very efficient. We only have to compute the output of a (shallow)
feed-forward network, which can easily be done in parallel for the
whole context window on a GPU.

The SSN takes as input a context window of word embeddings
[x(t),z(t —1),...,2(t — N —1)] where N is the size of the con-
text window. The context window covers the current word and the
previous N — 1 words. Our experiments showed that it is beneficial
to use shared word embeddings for the SSN and the language model.
In this way, we can share the parameters for the embedding matrix
and reduce the total number of parameters. The SSN consists of M
feed-forward (FFWD) layers followed by a non-linearity. We used
rectified linear units (reLU) as non-linearity. The SSN then com-
putes outputs [y(t),y(t — 1),...,y(t — N — 1)] for each element
in the window

y(t —n) =FFWD(x(t —n)), Vne{0,1,...,N—1}. (3)

The outputs of the SSN are averaged over the whole context window
to obtain a fixed-size vector representation of the whole sequence

1 N
at) =+ >_y(t—n). “)

The context representation a(t) is used as adaptation feature for the
LM.

In [10], it was shown that such an SSN could be trained jointly
with the network it is attached to by error backpropagation for
speaker adaptation. That means it fulfils our requirement that the
context representation is jointly trainable with the main network.

7251

U™ - —
w(t) FFWD
f y(t) 3 o)
- U™ - S
w(t—N—1) FFWD
B y(t-N-1)
S LU """""""""""""" "
| (o . |
! [\27) RE() :
X U™ vw ﬂ 1% !
! w(t) [LSTM U w(t+1),
h() d(t)

Fig. 2: UniFA adaptation framework with (a) the sequence summary
network (SSN) based context extractor network, and (b) LSTM-LM
domain adaptation with fLHUC.

3.2. fLHUC Domain Adaptation Layer

The context adaptation is realised in our proposed approach by
feature-based learning hidden unit contributions (fLHUC). We in-
sert an adaptation layer after the LSTM before the output layer as
shown in Figure 2 (b). The context representation a(t) calculated
by the context extractor network is used as adaptation feature for the
fLHUC. fLHUC applies a gating function to the output of the LSTM

dt) = (V®h(t) + bY™) 0 ™ (1), 5)

where ® denotes an element-wise multiplication of two vectors. The
adaptation parameters h® (t) are calculated from the context fea-
tures by a linear layer and a subsequent sigmoid activation function

R (t) = 20(U™a(t) + 7). (6)

U® and bV'® are the weight matrix and bias vector of the linear
layer for the output of the SSN. This linear layer is necessary to
match the output dimensionality of the context extractor network and
the adaptation layer.

In fLHUC, the range of the adaptation parameters b (t) is re-
stricted to [0,2]. The amplification of the sigmoid function by a
factor of two compensates for the reduced activation in some nodes
after the adaptation layer. To keep the activation of the nodes after
the adaptation layer on approximately the same level [11] suggested
amplifying the activation of those nodes that are not set to zero.

When combining the output of the SSN with the adaptation
layer, we found it very helpful to use a normalisation of the context
features. We applied layer normalisation [18] to the input of the
sigmoid function.

4. EXPERIMENTS
4.1. Dataset

The dataset for our experiments consisted of TED talks. For LM
training, we used a training set consisting of subtitles from 2494
TED talks. The validation and test sets were composed of subtitles

Table 1: Comparison of subtitle and TED-LIUM test sets.
sentence length (words)

min | max mean
subtitle 2 19 9
TED-LIUM 2 122 25

as well. The training set had approximately 5.1M tokens and a vo-
cabulary size of 43K words, where every word appearing only once
is mapped to the OOV token.

For ASR experiments, we used a speech recogniser based on
the standard TED-LIUM Kaldi recipe [14, 19], i.e., a speech recog-
niser with a feed-forward deep neural network acoustic model with-
out any sequence discriminative training. The validation and test
sets in the TED-LIUM recipe and in the subtitle-based set contained
the same talks, but TED-LIUM uses re-transcribed talks. This re-
transcription introduced some mismatch with the text data that we
used for training our LMs. The major difference is the sentence
length in the subtitle and TED-LIUM test sets as shown in Table 1.
By re-transcribing the talks, the sentence length in TED-LIUM in-
creased compared with the original subtitles.

4.2. Model Training

For all NN-LMs in the experiments, we used state of the art LSTMs
as recurrent units. The recurrent layer had 300 LSTM cells. We
used AdaGrad [20] optimiser and a starting learning rate of 0.1. The
Gradients were clipped to an L2 norm of 5. We used standard back-
propagation through time for 20 time steps and a mini-batch size of
128. The networks were regularised by dropout [21] with a dropout
ratio of 50%. As mentioned in Section 3.2, we used layer normalisa-
tion [18] when combining the SSN with the fLHUC adaptation layer.
All methods were implemented with the open-source toolkit chainer
[22]. The number of model parameters of the baseline LSTM-LM
were 26M. Using fLHUC, the parameter size increased by 105K.
UniFA increased the parameter size of the baseline by 270K.

In the experiments we compared fLHUC with two different
methods to derive the adaptation features (a(t) in Figure 2 (b)). The
first method was conventional LDA feature-based domain adaptation
(fLHUC-LDA). We used the same fLHUC adaptation layer [13] as
in our proposed method but the adaptation parameters were derived
from LDA features. In this case, we used the LDA implementation
in Scikit-learn [23] to train the topic model and to calculate the
features. We set the number of LDA topics to 50. The topic model
was trained by splitting the subtitle training set into individual talks.
For training and evaluation of the LMs, the LDA features were cal-
culated from a fixed-size sliding window. The second method uses
the SSN to extract the context features. The SSN in our proposed
UniFA had 300 units and we used a network with a single hidden
layer.

For N-best rescoring, we used the 100-best list to calculate the
LDA features and to calculate the context features with our proposed
method. That means, recognition errors in the hypothesis can have
an effect on the context representation of subsequent utterances if an
utterance is shorter than the context window.

4.3. PPL Results

We first compare the PPL results as summarised in Table 2. All PPLs
for NN-LMs were obtained without N-gram interpolation and show
therefore a fair comparison of the different adaptation mechanisms.
As baseline, we provide the PPL of an LSTM-LM without any do-
main adaptation.

As comparison to our proposed method, we used conventional
LDA feature-based domain adaptation, with LDA features calculated

Table 2: PPL for subtitle and TED-LIUM validation and test set.
The number in brackets denotes the context window size.

Model Subtitle PPL TED-LIUM PPL
val test val test
LSTM-LM 51.58 | 51.98 | 209.34 | 156.29
fLHUC-LDA (50) 48.32 | 48.56 | 226.48 | 154.15
fLHUC-LDA (100) | 47.47 | 47.44 | 188.33 | 139.12
fLHUC-LDA (200) | 46.76 | 46.98 | 173.51 | 135.68
UniFA (50) 3574 | 36.82 | 144.09 | 120.14
UniFA (100) 38.27 | 37.66 | 165.55 | 129.21
UniFA (200) 37.18 | 37.82 | 168.79 | 135.34

Table 3: WER after 100-best rescoring for TED-LIUM. The number
in brackets is the context window size.

Model val WER[%] | test WER[%]
I-best 16.3 15.1
LSTM-LM 14.2 12.1
fLHUC-LDA (50) 14.3 12.2
fLHUC-LDA (100) 14.0 122
fLHUC-LDA (200) 14.0 11.9
UniFA (50) 13.8 11.8
UniFA (100) 13.7 12.0
UniFA (200) 13.9 12.0

from a window size of 50, 100 and 200 words, respectively. From
the adaptation features, we calculated the adaptation parameters in
fLHUC. fLHUC-LDA showed slight improvements on the LSTM-
LM for the subtitle set and TED-LIUM for longer context window
lengths. On TED-LIUM, a window size of 200 words led to a 23%
and 12% PPL reduction for the validation and test set compared with
a 50-word window size, respectively.

For our proposed method, we used the same window sizes as
with fLHUC-LDA. Compared with all other methods, our proposed
method achieved a significantly lower PPL on the subtitle set and
TED-LIUM. The PPL reduction ranges from 26% to 19% on the
subtitle set. Especially for small context window sizes, our method
showed a high PPL reduction compared with f{LHUC-LDA. On
TED-LIUM, our proposed method consistently outperformed our
LSTM-LM baseline and could further improve on fLHUC-LDA.

4.4. Rescoring Results

Another very important metric for NN-LMs used in ASR systems is
their improvement of the recognition result after rescoring in terms
of WER. For this purpose, we used Kaldi’s TED-LIUM recipe for
100-best rescoring. The 1-best result was obtained with a trigram
LM that is distributed with the TED-LIUM recipe [24]. The trigram
was trained on different data than TED talks. Table 3 shows the
WER for the 1-best decoding result and after 100-best rescoring for
all models. The baseline LSTM-LM led to a great WER reduction
compared with the 1-best result. For {LHUC-LDA , the ASR results
were analogue to the PPL results. With a short context window,
fLHUC-LDA fell behind the LSTM-LM. The method could only
improve on the baseline with a larger context window.

Our proposed UniFA showed again an improvement on an
LSTM-LM across all context window sizes. The validation set
WER was in all cases better than for {LHUC-LDA and it only fell
behind fLHUC-LDA for the longest window size of 200 words. A
matched-pair significance test showed a significant improvement of
UniFA (50) on an LSTM-LM at a significance level p < 5%.

As Table 1 shows, for TED-LIUM the average utterance length
is 25 words. This corresponds exactly to half the window length of
our best UniFA model. LMs do not benefit much from a very large
context window in rescoring because there might be many recogni-
tion errors from preceding utterances in the context window. How-
ever, these errors seem not to harm the model at shorter context win-
dows and the extractor network can successfully provide additional
(short-term topic) information.

7252

0 T T 0 7
Talk 6 1 Talk7 | Talk 8 :
10 = d 0.6
< 20] — an .u.-..uq:.. i 0‘5
[=) : 1 [0.4
= 30 ~ i i 0.3
i i - 0.2
40 — 1 1
i i 0.1
50 - - — - 0.0
(@)
0 - —
——— ,,,,,4: 4
i 3
=]
100 4 — = 2
3 = =E 1
g =
=1 = 0
200 e
I -1
= -2
300
0
£ 2
100 = = 0
3 = § —2
2 FE =
200 - = -4
B -6
:,
L Ay -8
300 T : T |
17500 20000 22500
word
(c)

Fig. 3: Visualisation of (a) LDA features for 200-word window size,
fLHUC adaptation parameters before the sigmoid function from (b)
LDA features from 200-word window size and (c) SSN (50) for talks
six, seven and eight in the subtitle test set.

4.5. Analysis of fLHUC Adaptation Parameters

In addition to comparing each model’s effectiveness in ASR, we
provide further investigation of the adaptation parameters learned
by each model. We compare the best models with LDA features
and SSN from Section 4.4. Figure 3 shows a visualisation for the
fLHUC adaptation parameters before the sigmoid function when
learned from LDA features and from the SSN with different window
lengths. As data for the comparison, we used talks six, seven and
eight in the subtitle test set. Figure 3 (a) and (b) show the LDA
features for a 200-word window and the adaptation parameters the
network learned to extracted from them, respectively. The LDA
features show three distinct topics with high activation for each of
the talks. The adaptation parameters have values around zero for
most of the nodes in the adaptation layer, which means that the
node passes through its input. However, certain nodes show either
high (red horizontal lines) or low (blue horizontal lines) activation
depending on the active LDA topic. This means that these nodes
amplify or attenuate their input, respectively.

Figure 3 (c) shows the adaptation parameters when learned to
extract with the SSN from a context window of 50 words'. Similar
to the adaptation parameters learned from LDA features, there are
also some nodes in the adaptation layer that receive constant high or
low activations during each talk. This suggests that the SSN learns to
capture a global topic-like context spanning several thousand words.
However, the adaptation parameters from the SSN appear noisier
compared with the ones learned from LDA features. This means that

'We applied a threshold to values around minus two for improved visual-
isation.

the SSN output changes more frequently depending on the context
compared with LDA features. This suggests that in addition to the
long term context the SSN can also capture more local context. This
leads to a more frequent regulation of each node in the adaptation
layer. As the experimental results showed, LDA features with shorter
context windows were unable to capture these local topic changes
but it was important for reducing PPL and WER.

5. RELATED WORK

We decided to use an SSN for the context representation, however,
there are other more common methods in natural language process-
ing. Among these are convolutional neural networks [25, 26], or
vector based representations like paragraph vector [27] and deriva-
tives thereof [28]. Despite being a successfull method, paragraph
vector is not suitable to our problem because it requires a document
matrix that grows with the number of documents. A row in this ma-
trix serves as representation for each document and the matrix has
to be extended for unknown documents in the evaluation set. An-
other popular and successful context representation is the encoder-
decoder framework [29], which showed to be very successful in ma-
chine translation [30] or in the generation of conversation responses
[31] among other tasks. However for our application, such encoder
architecture would be computationally very expensive because we
have to run an LSTM-based encoder over a long (possibly a few
hundred words) context window at each and every word prediction.

A recent approach for LM domain adaptation which is related to
ours was presented in [32]. It uses a mixture of pre-trained LSTM-
LMs where the weight for each LSTM-LM is determined by a mixer
network. This mixer network is represented by another LSTM. How-
ever, there are several differences with our proposed approach. First,
the method introduced in [32] is not a pure feature-based domain
adaptation method because it requires domain information for the
pre-training. Second, it is a multi-step training process whereas our
UniFA is a single-step training process.

6. SUMMARY AND OUTLOOK

We presented a unified framework UniFA for feature-based LM do-
main adaptation based on a sequence summary network (SSN) and
feature based learning hidden unit contributions (fLHUC). Our re-
sults on a dataset of TED talks showed improved PPL results com-
pared with a baseline LSTM-LM and conventional feature-based do-
main adaptation with LDA features. In 100-best rescoring on the
TED-LIUM dataset, our proposed method UniFA consistently im-
proved on an LSTM-LM baseline and outperformed conventional
feature-based adaptation in all but one cases. In addition, we pro-
vided further insight into what the network learns from the context
window by analysis of the fLHUC adaptation parameters.

For future work, we are considering to improve on the current
context representation learned by the SSN. So far, longer context
window sizes were not helpful further improving the results. We
are planning to investigate pre-training the SSN for instance as an
auto-encoder. In addition, we think that attention could help to ob-
tain a better context summary vector. For longer context windows,
performance might degrade because the context vector only contains
an average representation of all words in the context window. Espe-
cially regarding rescoring, we consider learning a more robust con-
text representation by introducing distortions in the training data. An
interesting approach regarding how these distortions could be gener-
ated was presented in [33].

7253

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

(14]

[15]

(16]

(17]

(18]

7. REFERENCES

Ronald Rosenfeld, “Two decades of statistical language mod-
eling: Where do we go from here?,” Proceedings of the IEEE,
vol. 88, no. 8, pp. 1270-1278, 2000.

Jerome R Bellegarda, “Statistical language model adaptation:
review and perspectives,” Speech communication, vol. 42, no.
1, pp. 93-108, 2004.

Junho Park, Xunying Liu, Mark JF Gales, and Phil C Wood-
land, “Improved neural network based language modelling and
adaptation,” in INTERSPEECH, 2010.

Ottokar Tilk and Tanel Alumie, “Multi-domain recurrent neu-
ral network language model for medical speech recognition.,”
in Baltic HLT, 2014, pp. 149-152.

Tanel Alumide, “Multi-domain neural network language
model.,” in INTERSPEECH, 2013, vol. 13, pp. 2182-2186.

Tomas Mikolov and Geoffrey Zweig, “Context dependent re-
current neural network language model.,” in Spoken Language
Technology Workshop (SLT). 1EEE, 2012, vol. 12, pp. 234—
239.

Daniel Soutner and Ludék Miiller, “Application of LSTM neu-
ral networks in language modelling,” in International Confer-
ence on Text, Speech and Dialogue. Springer, 2013, pp. 105—
112.

Xie Chen, Tian Tan, Xunying Liu, Pierre Lanchantin, Moquan
Wan, Mark JF Gales, and Philip C Woodland, “Recurrent neu-
ral network language model adaptation for multi-genre broad-
cast speech recognition,” in INTERSPEECH, 2015.

David M Blei, Andrew Y Ng, and Michael I Jordan, “Latent
Dirichlet allocation,” Journal of machine Learning research,
vol. 3, pp. 993-1022, 2003.

Karel Vesely, Shinji Watanabe, Katerina Zmolikovd, Martin

Karafiat, Lukas Burget, and Jan Honza Cernocky, “Sequence
summarizing neural network for speaker adaptation,” in IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2016, pp. 5315-5319.

Pawel Swietojanski and Steve Renals, “Learning hidden unit
contributions for unsupervised speaker adaptation of neural
network acoustic models,” in Spoken Language Technology
Workshop (SLT). IEEE, 2014, pp. 171-176.

Lahiru Samarakoon and Khe Chai Sim, “Subspace LHUC for
fast adaptation of deep neural network acoustic models.,” in
INTERSPEECH, 2016, pp. 1593-1597.

Michael Hentschel, Marc Delcroix, Atsunori Ogawa, and To-
mohiro Nakatani, “Feature Based Learning Hidden Unit Con-
tributions for Domain Adaptation of RNN-LMs,” in 2018 Asia-
Pacific Signal and Infromation Processing Association Annual
Summit and Conference (APSIPA ASC). IEEE, 2018.

Anthony Rousseau, Paul Deléglise, and Yannick Esteve,
“TED-LIUM: an automatic speech recognition dedicated cor-
pus.,” in LREC, 2012, pp. 125-129.

Tomés Mikolov, Martin Karafiat, Lukas$ Burget, Jan Cernocky,
and Sanjeev Khudanpur, “Recurrent neural network based lan-
guage model,” in INTERSPEECH, 2010, pp. 1045-1048.

Martin Sundermeyer, Ralf Schliiter, and Hermann Ney,
“LSTM neural networks for language modeling.,” in INTER-
SPEECH, 2012, pp. 194-197.

Sepp Hochreiter and Jiirgen Schmidhuber, “Long Short-Term
Memory,” Neural computation, vol. 9, no. 8, pp. 1735-1780,
1997.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton,
“Layer normalization,” arXiv preprint arXiv:1607.06450,
2016.

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

7254

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Bur-
get, Ondrej Glembek, Nagendra Goel, Mirko Hannemann, Petr
Motlicek, Yanmin Qian, Petr Schwarz, Jan Silovsky, Georg
Stemmer, and Karel Vesely, “The Kaldi Speech Recognition
Toolkit,” in IEEE Workshop on Automatic Speech Recognition
and Understanding (ASRU). Dec. 2011, IEEE.

John Duchi, Elad Hazan, and Yoram Singer, “Adative sub-
gradient methods for online learning and stochastic optimiza-
tion,” Journal of Machine Learning Research, vol. 12, pp.
2121-2159, 2011.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya
Sutskever, and Ruslan R Salakhutdinov, “Improving neural
networks by preventing co-adaptation of feature detectors,”
arXiv preprint arXiv:1207.0580, 2012.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton,
“Chainer: a next-generation open source framework for deep
learning,” in Workshop on Machine Learning Systems (Learn-
ingSys) in the Twenty-ninth Anual Conference on Neural Infor-
mation Processing (NIPS), 2015.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine Learning in Python,” Journal of Machine Learning Re-
search, vol. 12, pp. 2825-2830, 2011.

Will Williams, Niranjani Prasad, David Mrva, Tom Ash, and
Tony Robinson, “Scaling recurrent neural network language
models,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2015. 1EEE, 2015,
pp- 5391-5395.

Yoon Kim, “Convolutional neural networks for sentence clas-
sification,” in Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2014, pp. 1746—1751.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom, “A
convolutional neural network for modelling sentences,” in Pro-
ceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (ACL), 2014, vol. 1, pp. 655-665.

Quoc Le and Tomas Mikolov, “Distributed representations of
sentences and documents,” in International Conference on Ma-
chine Learning (ICML), 2014, pp. 1188-1196.

Minmin Chen, “Efficient vector representation for documents
through corruption,” in International Conference on Learning
Representations (ICLR), 2017.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le, “Sequence to
sequence learning with neural networks,” in Proceedings of the
27th International Conference on Neural Information Process-
ing Systems - Volume 2, 2014, pp. 3104-3112.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio,
“Neural machine translation by jointly learning to align and
translate,” in International Conference on Learning Represen-
tations (ICLR), 2015.

Alessandro Sordoni, Michel Galley, Michael Auli, Chris
Brockett, Yangfeng Ji, Margaret Mitchell, Jian-Yun Nie, Jian-
feng Gao, and Bill Dolan, “A neural network approach to
context-sensitive generation of conversational responses,” in
Proceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, 2015, pp. 196-205.

Kazuki Irie, Shankar Kumar, Michael Nirschl, and Hank Liao,
“RADMM: recurrent adaptive mixture model with applica-
tions to domain robust language modeling,” in /EEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018, pp. 6079-6083.

Yinghui Huang, Abhinav Sethy, Kartik Audhkhasi, and Bhu-
vana Ramabhadran, “Whole sentence neural language model,”

in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2018, pp. 6089-6093.

		2019-03-18T11:11:00-0500
	Preflight Ticket Signature

