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ABSTRACT

Although neural language models have emerged, n-gram lan-
guage models are still used for many speech recognition tasks. This
paper proposes four methods to improve n-gram language models
using text generated from a recurrent neural network language model
(RNNLM). First, we use multiple RNNLMs from different domains
instead of a single RNNLM. The final n-gram language model is ob-
tained by interpolating generated n-gram models from each domain.
Second, we use subwords instead of words for RNNLM to reduce
the out-of-vocabulary rate. Third, we generate text templates using
an RNNLM for template-based data augmentation for named enti-
ties. Fourth, we use both forward RNNLM and backward RNNLM
to generate text. We found that these four methods improved perfor-
mance of speech recognition up to 4% relative in various tasks.

Index Terms— n-gram, RNNLM, interpolation, subword, tem-
plate

1. INTRODUCTION

n-gram language models (LMs) are still used for speech recognition
systems such as hybrid systems [1, 2, 3, 4], so improving n-gram
LMs using neural LMs is still an important research topic. There are
many approaches to leverage neural LMs for n-gram LMs [5, 6, 7].
One simple and promising approaches is to generate text from a re-
current neural network language model (RNNLM) and build n-gram
LMs using the generated text [8, 9, 10]. This paper proposes four
methods to improve n-gram LM using text generated from RNNLM.

We detail the four methods in Section 2. Section 3 describes re-
lated works. We evaluate the effectiveness of the proposed methods
on variety of tasks in Section 4. Section 5 concludes this paper.

2. PROPOSED METHODS

2.1. Domain wise generation

Ideal training data for LMs is matched domain and sufficiently large
data. In practice, training data consists of multiple corpora, which
have different domains and sizes. Web crawling data tends to be
large enough, but has a domain different from a target domain be-
cause it is written text. Matched domain data is often not large
enough. The standard method to make an n-gram LM using these
data is to interpolate multiple n-gram LMs from each domain [11].
Interpolation weights are estimated using an EM algorithm with a
development dataset.

Inspired by the method to make an interpolated n-gram LM from
multiple corpora, we propose using multiple RNNLMs, generating
multiple n-gram LMs, and interpolating them to make a final n-gram
LM. Fig. 1 shows a flowchart of this method. First, we do balance
sampling from datasets to make a single balanced corpus as (1) in
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Fig. 1. Flowchart to make an n-gram LM by domain wise text gen-
eration of RNNLMs. Domain #k corpus is used to adapt domain #k
RNNLM and to train domain #k original n-gram.

Fig. 1. We can reuse interpolation weight of the standard recipe to
make an interpolated n-gram LM for the balance sampling. The
balanced corpus is used to train a seed RNNLM as (2). We adapt
the seed RNNLM by fine-tuning using each corpus as (3) [12] . We
generate many texts using each adapted RNNLM as (4) and built n-
gram LMs as (5). The final n-gram LM is obtained by interpolating
both original n-gram LMs and generated n-gram LMs as (6).

2.2. Subword generation and word acquisition

Huang et al. [13] proposed using subwords for text generation of
RNNLM. It performs superiorly for languages that have many com-
pound words. In addition, we can obtain new vocabulary from its
generated text.

One problem in word acquisition using subword RNNLM is that
generated text can include unnatural words by combining an impos-
sible pair of subwords. We propose using a large web corpus to
filter out these unnatural words. For major languages, we can crawl
plenty of text from the web. This kind of corpus includes many ir-
relevant words for a target domain, but almost all words are natural
ones. Thus, words that frequently appear in a corpus generated by
RNNLM of the target domain and appeared at least once in the web
corpus can be good candidates for enhancing vocabulary.
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2.3. Template generation

The error rate of named entities is an important metric for many
practical applications of speech recognition [14, 15]. One practical
way to improve error rates is to augment text using templates [16].
For example, from a template “I went to [city]” and list of cities, we
can generate “I went to Tokyo” and “I went to New York”.

One problem in the template-based data augmentation is that
making large template data requires large effort. If template data
is not large enough, normal words in the template repeatedly ap-
peared in the augmented data. To mitigate this problem, we propose
generating templates themselves using RNNLM. The RNNLM for
template generation has special words such as [city] so that it can
input and output templates. The RNNLM is trained using manually
prepared templates as training data. We do transfer learning from
the seed RNNLM in Fig. 1, except for parameters corresponding to
the special words, to leverage general knowledge of the language.
Trained template RNNLM possibly generates not only “I went to
[city]” that appears in training data but also “I visited [city]” using
the knowledge. After generating a large amount of templates, we
replace these special words with specific examples to make a corpus
to train an n-gram.

2.4. Backward generation

Although a bidirectional RNN generally performs superiorly to an
unidirectional RNN, it is not straightforward to use future contexts
for RNNLM because language modeling is a task to estimate future
words [17, 18]. Instead of using a bidirectional model somehow, we
propose using another backward RNNLM to generate text. Because
text generation is inherently offline processing during training time,
using backward RNNLM does not affect test time processing. We
use both a forward RNNLM generated text corpus and a backward
RNNLM generated text corpus to make two n-gram LMs for each
domain. All the n-gram components are used to make the final n-
gram LM as in Fig. 1.

Note that we can use not only backward RNNLM but also arbi-
trary architectures of neural LMs in this scheme [19, 20].

3. RELATED WORK

There are many methods that do not require n-gram LMs leveraged
by neural LMs. Some use neural LMs directly for decoding [21, 22],
and others require no external LMs [23, 24]. We stick, however,
to n-gram LMs because current state-of-the-art speech recognition
systems use n-gram LMs [1, 2, 3] and n-gram is easy to customize
for commercial use cases where many customers frequently need to
add new words and adapt the LM using small amounts of text data.

Arisoy et al. [6] and Adel et al. [7] proposed methods to convert
a neural LM into an n-gram LM directly. On the other hand, we first
generate text using a neural LM, then train an n-gram LM using the
generated text. One merit of generating text is that it can use different
word units for RNNLM and n-gram LMs. In addition, it can use
arbitrary architectures of recently proposed neural LMs [19, 20].

Using a mixture of LMs of multiple domains is a widely ac-
cepted idea in language modeling [11, 25, 26]. We applied this idea
for text generation by neural LMs.

Many papers have investigated the effectiveness of subwords for
neural LM [27, 28]. Subword RNNLM was applied for text genera-
tion by Huang et al. [13]. Our contribution to this topic is to propose
a filtering method for word acquisition as explained in Section 2.2.

Bidirectional RNNLMs have been investigated in [17, 18] for
online processing. Xiong et al. [2] uses both forward and backward
RNNLM for offline n-best rescoring of speech recognition results.
Similar to the them, we propose using both forward and backward
RNNLM for text generation.

4. EXPERIMENTS

We selected in-house datasets of Korean, Japanese, and English to
evaluate our proposed methods. The Korean task was selected to
see the effect of subword modeling. Because the unit we used for
LM of Korean is relatively long, subword modeling was expected
to have more positive results than for other languages. The Japanese
task was an adaptation task to a specific domain where addresses and
names are often uttered. This task was selected to evaluate template
generation, which can effectively generate sentences including ad-
dresses and names. The English task was selected to evaluate our
proposed method in a rich resource language.

4.1. Korean

The left half of Table 1 shows training data and its word counts. Five
transcribed datasets and three web crawling datasets are used for
training. We used four test datasets for evaluation: A, B, C, and X.
Test set A, B, and C were sampled from the same domain corpus as
that of training sets A, B, and C, respectively. Data from a domain
of test set X was not included in training data. Test sets A, B, C,
and X had 15K, 3K, 15K, and 3K words, respectively. To estimate
interpolation weights of n-gram models, we also prepared 6K words
for a development set. There was no overlap between training data,
development data, and test data.

We decided to use Korean phrases, which are segmented by
blank spaces in written form, as an unit of an n-gram LM. One rea-
son for this was that we could make a pronunciation dictionary con-
sidering liaison, which mainly occurs within Korean phrases [29].
For subword modeling for RNNLM, we used the unigram language
model algorithm implemented in sentencepiece1 [28]. The subword
vocabulary size was set to 8K.

RNNLM had a word embedding and one layer of gated recur-
rent unit (GRU) layer [30]. Dimension of the word embedding and
the GRU layer were both 1024. For subword RNNLM, full 8K vo-
cabulary was used for inputs and outputs. For word RNNLM, the
top 30K words were used for inputs and outputs. Standard cross en-
tropy criterion, an SGD algorithm, dropout were used to train these
RNNLMs.

We built an interpolated n-gram LM following the flow in Fig. 1.
For each RNNLM, we generated 1 billion words. We trained a 4-
gram LM with modified Kneser-Ney smoothing [31]. Interpolation
weights were estimated using an EM algorithm using the develop-
ment data. As for data of news site F, we did not generate any text
because the original data size was large enough.

As for an acoustic model (AM), we used a convolutional neu-
ral network (CNN) that has two convolution layers and five fully
connected layers [32]. The size of the training data was 1K hours.
The student-teacher framework was used to train the CNN using the
VGG model as a teacher [33, 34].

Table 2 shows results. We tried not only our proposed flow
shown in Fig. 1 but also using only a seed RNNLM to generate
text and an n-gram for comparison. In addition, we tried both word

1https://github.com/google/sentencepiece
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Table 1. Corpus name, word count, and estimated interpolation weights for Korean experiments. Weights #1 represents estimated interpo-
lation weights for a baseline model. Weights #5 represents that of proposed method, which uses n-gram models of both original text and
subword RNNLM generated text of multiple domains.

Corpus name Word count Weights #1 Weights #5
Original Generated Total

Transcribed data - domain A 771K 0.4312 0.0926 0.3459 0.4385
Transcribed data - domain B 638K 0.1601 0.0243 0.1365 0.1608
Transcribed data - domain C 2,666K 0.1581 0.0282 0.0773 0.1056
Transcribed data - domain D 998K 0.0185 0.0041 0.0048 0.0089
Transcribed data - domain E 9K 0.0016 0.0002 0.0623 0.0625
Web crawling - news site F 507,057K 0.1501 0.1256 n/a 0.1256
Web crawling - related site G 565K 0.0424 0.0075 0.0220 0.0295
Web crawling - related site H 219K 0.0379 0.0054 0.0632 0.0686
Total 1.0000 0.2879 0.7121 1.0000

Table 2. %CERs using different components for interpolated n-gram LMs for Korean task
Components Test A Test B Test C Test X Average

#1 8 original n-gram . . . (*) 14.0 23.0 33.9 16.0 21.73
#2 (*) + 1 seed-word-RNNLM generated n-gram 13.8 22.4 33.9 15.8 21.48
#3 (*) + 7 word-RNNLMs generated n-gram 13.8 22.5 33.6 15.3 21.30
#4 (*) + 1 seed-subword-RNNLM generated n-gram 13.8 22.4 33.7 15.7 21.40
#5 (*) + 7 subword-RNNLMs generated n-gram 13.6 22.2 33.6 15.2 21.15

Table 3. %OOV rate and %CERs using different vocabulary for Korean task
Voc size OOV rate Test A Test B Test C Test X Average

#6 Words in transcribed data . . . (*) 77K 4.70 13.9 29.6 33.8 15.4 23.18
#7 (*) + Frequent words in web data 220K 4.37 13.8 25.0 33.8 15.6 22.05
#8 (*) + Frequent words in generated data 220K 3.42 13.7 22.4 33.4 15.2 21.18
#9 == #5 (*) + Combination 220K 3.41 13.6 22.2 33.6 15.2 21.15

RNNLM and subword RNNLM to see the effect of subword mod-
eling. We use the character error rate (CER) for the performance
metric instead of the word error rate (WER) because segmentation
of Korean phrases are ambiguous. #1 was a baseline results with-
out using RNNLM text generation. RNNLM text generation was
effective because all results from #2 to #5 had better CERs than #1.
Using multiple RNNLMs and generated n-gram models for each do-
main was better than using single seed RNNLM (#2 vs. #3, and #4
vs. #5). Using a subword unit for RNNLM text generation had better
CERs than that of word RNNLM (#2 vs. #4, and #3 vs. #5).

The right half part of Table 1 shows the estimated interpolation
weights of #1 and #5 in Table 2. Weights for generated n-gram mod-
els were larger than those of the original n-gram models. Because
we could generate enough large data for n-gram LM, RNNLM text
generation was effective, especially for domains where original data
size was small. Weight for domain E was increased after adding
generated n-gram LMs. Domain E data was relevant data but it had
small weight because its corpus size was very small. Thanks to the
RNNLM text generation, we could increase the text related to the
target domain from a small corpus.

Next, we changed vocabulary and saw out-of-vocabulary (OOV)
rates and CERs. We used the same data to train LMs for #5 in Ta-
ble 2. Table 3 shows the results. #6 is a result using a 77K vocab-
ulary that appears in the five transcribed datasets. #7, #8, and #9
added 143K words so that vocabulary size became 220K. Increasing
vocabulary size improved OOV rates and CERs. Comparing #7 and
#8, using the subword RNNLM generated corpus to add words was
better than using web crawling data. As for #9, the top 100K fre-
quent words in generated data and the next top 43K frequent words
that also appeared in the web crawling corpora are used to filter out

unnatural words generated by subword RNNLM. #9 slightly outper-
forms #8. We used this vocabulary for experiments for Table 2. #9
in Table 3 and #5 in Table 2 were the same experimental setting.

4.2. Japanese - address and name

This task involved adapting a general purpose n-gram LM to a spe-
cific domain n-gram LM. We interpolated a general purpose n-gram
and n-gram LMs trained using adaptation data. Adaptation data, de-
velopment data, and test data consisted of 10K, 4K, and 4K words,
respectively. There was no overlap. This domain included many ut-
terances that included addresses and names. From the training data,
we manually made template data by replacing the addresses and
names to special words, e.g., [First name]. This template datasets
has 2K words and 315 special words. For each special word, we pre-
pared a list of possible examples, e.g., Masayuki for [First name].
Table 4 shows special words used for the template data.

Subword modeling, RNNLM, n-gram LM, and AM setups were
the same as in the Korean experiment but with different training data.

Table 5 shows the CERs. #10 shows results of the general pur-
pose n-gram. Interpolating an n-gram using the adaptation data had
large gain (#10 vs. #11). Then, we trained a seed-subword-RNNLM
using a balanced corpus, adapted it using the adaptation data, gener-
ated texts from the adapted-subword-RNNLM, and built an n-gram
LM. Interpolating this n-gram had better result (#11 vs. #12). Next,
we generated 15M words of text using the template data repeatedly
and built an n-gram. Adding this n-gram achieved better results (#12
vs. #13). Finally, we adapted the RNNLM using the template data
and generated 50M words of templates as explained in Section 2.3.
We generated 50M words of text replacing special words in gener-
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Table 4. Special words, # of examples, and its counts in the tem-
plate dataset. We separated whole Japanese addresses into four parts
and prepared special words for each combination of these parts to
represents possible colloquial variations2.

Special word # of examples count
[Family name] 7,370 165
[First name] 5,595 66
[Address 1-2-3-4] 36,377 2
[Address 3-4] 35,709 4
[Address 4] 27,857 17
[Address 2-3] 27,220 4
[Address 2-3-4] 26,418 1
[Address 1-2-3] 13,655 1
[Address 3] 5,603 15
[Address 2] 4,989 23
[Address 1-2] 3,366 12
[Address 1] 93 5

Table 5. CERs using different components for interpolated n-gram
LMs for Japanese task

Components %CER
#10 general purpose n-gram . . . (1) 13.27
#11 (1) + adaptation data n-gram . . . (2) 11.60
#12 (2) + RNNLM generated n-gram . . . (3) 11.42
#13 (3) + Template generated n-gram . . . (4) 11.34
#14 (4) + Template-RNNLM generated n-gram 11.12

Table 6. WERs using different components for interpolated n-gram
LMs for English task. “RNNLM” means n-gram LM trained using
generated text from the RNNLM. “backward” means n-gram LM
trained using generated text from backward version of the RNNLM.

Components %WER
#15 baseline n-gram . . . (*) 9.89
#16 (*) + seed-subword-RNNLM 9.84
#17 (*) + seed-subword-RNNLM + backward 9.82
#18 (*) + seed-word-RNNLM 9.78
#19 (*) + seed-word-RNNLM + backward 9.78
#20 (*)+ adaptation data n-gram . . . (**) 9.40
#21 (**) + adapted-subword-RNNLM 9.28
#22 (**) + adapted-subword-RNNLM + backward 9.23
#23 (**) + adapted-word-RNNLM 9.21
#24 (**) + adapted-word-RNNLM + backward 9.20

ated templates, and built an n-gram. Adding this n-gram further
improved performance (#13 vs. #14).

4.3. English

This task involved adapting an n-gram LM for broadcast news to
a specific channel. The baseline broadcast news n-gram LM was
trained using 5.8 billion words of text. Adaptation data, develop-
ment data, and test data consisted of 2M, 13K, and 72K words, re-
spectively. There was no overlap. We first trained a seed-RNNLM
using the sampled data of the corpus for the baseline model. Then,
we adapted the seed-RNNLM using the adaptation data. For more
detail of this data, we refer to [35].

2For example, “Tokyo-to Chuo-ku” is possible but “Tokyo Chuo-ku” is
not possible for [Address 1-2], although both “Tokyo” and “Tokyo-to” are
possible for [Address 1].

Table 6 shows the results of changing components for interpo-
lated n-gram LM. #15 – #19 used only baseline data. #20 – #24
used both baseline data and adaptation data. Adding RNNLM gen-
erated n-gram components improved WER in the all cases. RNNLM
text generation can improve performances even for an English task
that has rich data resources. Word RNNLM outperformed subword
RNNLM (#16 vs. #18, #17 vs. #19, #21 vs. #23, and #22 vs. #24)
for English, which has fewer compound words. Using both forward
RNNLM and backward RNNLM had small gain (#16 vs. #17, #21
vs. #23, and #22 vs. # 24), except #18 vs. #19. Performance gain
from #20 to #21 – #24 was larger than that from #15 to #16 – #19.
This indicates that text generation from RNNLM for an n-gram LM
is especially useful for a domain where the amount of training data
is not large enough.

5. CONCLUSION

This paper proposed four methods for improving interpolated n-
gram LMs using text generated from RNNLM: domain wise genera-
tion, subword generation and word acquisition, template generation,
and backward generation. All the proposed methods were empiri-
cally shown to have positive effects.

These are our recommendations to make an n-gram LM from
RNNLM generated text:

• Interpolate n-gram LMs from text generated from multiple
RNNLMs for each domain if training data consists of multi-
ple domains. Especially, it is worth interpolating a generated
n-gram LM for a domain that has small amounts of data.

• Use subword RNNLM for languages that have many com-
pound words. It is worth acquiring words from text generated
from subword RNNLM.

• Use text corpus generated from templates which is generated
by RNNLM, if a target domain includes many named entities
such as addresses and names.

• Use backward RNNLM to obtain further gain.
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