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ABSTRACT

Maximum entropy language models (MaxEnt LMs) are log-linear
models which are able to incorporate various hand-crafted features
and non-linguistic information. Standard MaxEnt LMs are compu-
tationally heavy for tasks with a large vocabulary size due to the
expensive normalization computation in the denominator. To ad-
dress this issue, most recent works on MaxEnt LMs have used class
based MaxEnt LMs. However, the performance of class based Max-
Ent LMs might be sensitive to word clustering and it is also time-
consuming to generate high-quality word classes. Motivated by the
recent success of sampling techniques in accelerating the training of
neural network language models, in this paper, three widely used
sampling techniques, importance sampling, noise contrastive esti-
mation (NCE) and sampled softmax, are investigated for the Max-
Ent LM training. Experimental results on the Google One Billion
corpus and an internal speech recognition system demonstrate the
effectiveness of sampled softmax and NCE on MaxEnt LM train-
ing. However, importance sampling is not effective for MaxEnt LM
training despite its similarity to sampled softmax. To our knowledge,
this is the first work applying sampling techniques on MaxEnt LM
training.

Index Terms— Maximum entropy language model, importance
sampling, noise contrastive estimation, sampled softmax

1. INTRODUCTION

The language model is an important component in a range of appli-
cations including automatic speech recognition (ASR). N-gram and
neural network language models are the two most popular models
used in modern ASR systems. However, it is difficult to incorpo-
rate various informative features, such as skip-gram, trigger words,
time-of-day and geographic location.

There is another type of powerful language model, maximum
entropy language models (MaxEnt LMs), which are able to incorpo-
rate hand-crafted features and non-linguistic information into a uni-
fied log-linear framework. Standard n-gram features and other fea-
tures, such as skip-grams and geographic location, are easily taken
into account in MaxEnt LMs.

These days, it is common to use billions of words for the train-
ing of language models. It is crucial to improve the scalability of
language model training for large amounts of data. The standard
MaxEnt LMs shown in Equation 1 require summing over the whole
vocabulary. This is computationally expensive for large vocabulary
tasks. Furthermore, the computation in MaxEnt LMs is not as struc-
tured as neural network language models, where GPUs can be used
to optimize the matrix related operations. However, for the training
of MaxEnt LMs, CPUs are normally used. To improve the com-
putational efficiency, previous approaches used class based MaxEnt

LMs when large data corpora were processed. Unfortunately, the
model performance can be affected by the choice of word classes
[1]. In addition, high-quality word clustering on scalable data is
time-consuming. For example, in [2], almost one third of total train-
ing time was spent on word clustering.

Motivated by the recent success of sampling techniques in the
training of neural network language models [3, 4, 5, 6], we aim to
explore the use of sampling techniques for MaxEnt LM training.
Three widely used sampling techniques, importance sampling [7],
noise contrastive estimation (NCE) [8, 4] and sampled softmax [5],
were applied to the MaxEnt LM training. To our knowledge, this
is the first published work investigating sampling techniques for the
training of MaxEnt LMs. Our initial experiments demonstrated that
sampled softmax and NCE works well for training of MaxEnt LMs.
In contrast, importance sampling is not suitable for the training of
MaxEnt LMs despite its similarity to sampled softmax.

This paper is organized as follows, Section 2 gives a brief re-
view of maximum entropy language models. The three sampling
algorithms investigated in this paper are described in Section 3, fol-
lowed by the implementation details of MaxEnt LMs on multiple
machines. Experimental results are reported in Section 5. Finally,
the conclusion and discussion of future work can be found in Sec-
tion 6.

2. REVIEW OF MAXIMUM ENTROPY LMS

MaxEnt LMs [9] were originally derived from information theory by
maximizing the entropy of the model distribution given some con-
straints observed in the training data. It can be proven that the unique
solution of MaxEnt LMs can be expressed in the form of a log-linear
model, and the probability of word wd with history h can be com-
puted as,

P (wd|h) =
exp(

∑|F |
k=1 λfk(wd,h)fk(wd, h))∑

j∈V exp(
∑|F |
k=1 λfk(wj ,h)fk(wj , h))

(1)

where f(w, h) defines the map from any hand-crafted feature ex-
tracted from the target word w and its history h to {0, 1} binary
value. Its value is 1 when some property of (w, h) defined by
f(w, h) is true. For example, this feature can be n-gram or skip-
gram features. λfk(w,h) is the model parameter of the corresponding
feature. |F | is the total number of MaxEnt feature types. The model
parameters of MaxEnt LMs can be estimated using generalized
iterative scale (GIS) [10] or stochastic gradient descent (SGD). Ac-
cording to the literature, when the size of training data is small, it is
more common to choose GIS as it is faster to converge [11, 12]. In
a large corpus, it is difficult to store the statistics of the whole data
and SGD is used instead [13, 14, 15].
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The computation of MaxEnt LMs can be viewed as the softmax
function of s(w, h) =

∑|F |
k=1 λfk(w,h)fk(w, h)). In order to get

a valid probability, Equation 1 requires computing the denominator
over the whole vocabulary. It is computationally heavy for tasks with
a large vocabulary. The authors in [16] proposed an efficient way for
training MaxEnt LMs with n-gram features by utilizing the hierar-
chical structure in the different orders of n-gram features. However,
this technique cannot be applied to other features such as skip-gram
and non-linguistic features. In order to address this issue, recent
work has introduced word classes to improve the training efficiency
[11] and performance [1] of MaxEnt LMs. In MaxEnt LMs with
word classes, the word probability can be computed as,

P (wi|h) = P (C(wi)|h)P (wi|C(wi), h) (2)

It can be seen that the word probability is factored into the prod-
uct of two separate probabilities: one is the class probability and
the other is the word probability within class. These two probabili-
ties can be modeled by two MaxEnt LMs respectively. The MaxEnt
LM P (C(wi)|h) for class only needs to sum over classes C and the
MaxEnt LM for word P (wi|C(wi), h) computes the sum over the
class C(wi) which wi belongs to. The computation is significantly
smaller than that of word based MaxEnt LMs. Ideally, the compu-
tation can be accelerated up to

√
|V|/2 times compared to the word

based MaxEnt LM shown in Equation 1, when
√
|V| word classes

are clustered and each class contains
√
|V| words.

There have been many research efforts in MaxEnt LMs during in
the last several years due to their flexibility of incorporating various
information. Model M [1, 17] is a typical MaxEnt LM. It presented
consistent performance improvement over the standard backoff n-
gram LM using standard n-gram features. L1 and L2 regulariza-
tion were applied with specific regularization coefficients. However,
the MaxEnt LMs in Model M were normally trained on a relatively
small corpora (less than 100M words). There are also a series of pa-
pers from Google working on scalable MaxEnt LMs [13, 14, 15, 2],
where MaxEnt LMs were trained on the giga or even tera words
scale. It was found that the model converged well without any reg-
ularization. The models were trained on multiple machines and a
simple model average was applied after a specific number of up-
dates. Our approach is more similar to Google’s work by training
MaxEnt LMs on a large amount of data with multiple machines.

3. SAMPLING TECHNIQUES FOR MAXENT LM
TRAINING

Sampling techniques have achieved big success in the neural net-
work language model training [3, 4, 5, 6] 1. By applying sampling
techniques, only a small fraction of noise samples and target sam-
ples, are needed for the likelihood estimation and gradient compu-
tation, instead of the whole vocabulary. This improves the compu-
tational efficiency significantly, especially for tasks with a large vo-
cabulary. MaxEnt LMs encountered the same issue in the calculation
of the denominator as is shown in Equation 1. The MaxEnt LM can
be viewed as a neural network language model with direct connec-
tion from various MaxEnt features to the target word [18]. However,
in neural network language models, the history is represented as a
continuous hidden vector, and this hidden vector representation is
shared by all words in the output layer. In contrast, MaxEnt LMs
use discrete feature representation in the input layer and the connec-
tion between the input features and words in the output layer is very

1It is also known as candidate sampling in literatures:
https://www.tensorflow.org/extras/candidate sampling.pdf

sparse, depending on whether the specific MaxEnt feature fk(w, h)
exists or not. Therefore, it is still unknown whether sampled tech-
niques are suitable for the training of MaxEnt LMs, especially for
NCE, which implicitly constrains the variance of normalization term
to be a constant. We aim to investigate sampling techniques for Max-
Ent LMs in this paper. Three well-known sampling algorithms were
explored, which are importance sampling (IS), noise contrastive es-
timation (NCE) and sampled softmax (SS).

3.1. Importance Sampling

Importance sampling is a general technique to estimate properties
of a particular distribution when it is difficult to draw samples from
the original distribution. Samples from another noise distribution
are used for approximation. In previous work, importance sampling
(IS) was applied for the training of neural network language models
(NNLMs) to reduce computation in the output layer [7, 19]. In Max-
Ent LMs, the same issue exists in the computation of the denomi-
nator in Equation 1. Hence, importance sampling can be applied.
For the maximum likelihood based objective function, the gradient
of MaxEnt LMs can be written as

∂ logP (wd|h)
∂θ

=
∂s(wd, h)

∂θ
−

∑
w∈V

P (w|h)∂s(w, h)
∂θ

(3)

where ∂s(w,h)
∂θ

is the gradient of logit s(w, h) with respect to model
parameters θ. The second term in the above equation requires sum-
ming over the whole vocabulary. Importance sampling can be ap-
plied to approximate the sum in the second term.

∂ logP (wd|h)
∂θ

≈ ∂s(wd, h)

∂θ
− 1

K

K∑
k=1

P (wk|h)
Q(wk|h)

∂s(wk, h)

∂θ
(4)

where Q(w|h) is the noise distribution and K is the number of sam-
ples drawn from Q(w|h). Normally Q(w|h) is chosen as history in-
dependent, i.e. Q(w|h) = Q(w), such as the unigram distribution.
With this approximation, the gradient computation only involves the
target word and K sampled words. However, Equation 4 still needs
to use the word probability P (w|h) for the gradient computation,
which is

P (w|h) = exp(s(w, h))

Z(h)
(5)

The normalization term Z(h) is computed by summing over the
whole vocabulary. Again, importance sampling is applied to approx-
imate the computation of normalization term Z(h),

Z(h) =
∑
w∈V

exp(s(w, h)) ≈ 1

K

K∑
k=1

exp(s(wk, h))

Q(wk)
(6)

By applying Equations 5 and 6 into Equation 4, the gradient of IS
can be written as

∂ logP (wd|h)
∂θ

=
∂s(wd, h)

∂θ
−

K∑
k=1

exp(r(wk, h))∑K
j=1 exp(r(wj , h))

∂s(wk, h)

∂θ

(7)
where r(w, h) = log( exp(s(w,h))

Q(w)
). By applying importance sam-

pling, the gradient of MaxEnt LMs is only related to the target word
and K sampled words from the distribution Q(w), instead of the
vocabulary size |V|.

It is worth noting that, for importance sampling, the objective
function is not changed. The importance sampling is applied to ap-
proximate the gradient computation of maximum likelihood objec-
tive function.
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3.2. Noise Contrastive Estimation

Noise contrastive estimation (NCE) is an alternative objective func-
tion based on sampling to speedup both training and evaluation.
NCE aims to discriminate samples generated from the noise distri-
bution and the data distribution. Its objective function can be written
as

Jnce = log
P (wd|h)

P (wd|h) +KQ(wd)
+

K∑
k=1

log
KP (wk|h)

P (wk|h) +KQ(wk)

(8)
The first term is the likelihood of target wordwd generated by model
distribution and the second term is the likelihood of K noise words
generated by noise distribution. K is the ratio of noise samples to
target samples, which is set empirically. During NCE training, the
model probability P (w|h) can be approximated by using the unnor-
malized probability exp(s(w, h)) as the normalization term Z(h) is
constrained to be constant. Therefore, the NCE objective function
can be rewritten as

Jnce = log
exp(g(wd, h))

1 + exp(g(wd, h))
+

K∑
k=1

log
1

1 + exp(g(wk, h))

= log σ(g(wd, h)) +

K∑
k=1

log(1− σ(g(wk, h))) (9)

where g(w, h) = log( exp(s(w,h)
KQ(w)

) and σ denotes the sigmoid func-
tion. The NCE objective function can be viewed as applying the
binary classifier on each target and noise samples. At test time, un-
normalized probabilities can be applied, as the normalization term
can be approximated as a constant.

3.3. Sampled Softmax

Sampled softmax [5] is another sampling based objective function
derived from NCE. As discussed above, NCE can be viewed as ap-
plying a binary classifier between target and noise samples using the
sigmoid function. The softmax function is a natural extension of
the sigmoid function from binary to multi-class classification. The
objective function of sampled softmax can be written as,

Jss = log
exp(g(w0, h))∑K
k=0 exp(g(wk, h))

= log
exp(r(w0, h))∑K
k=0 exp(r(wk, h))

(10)
For notation clarity, w0 is the target wordwd , andw1, ..., wK areK
noise samples. Note that g(w, h) is log( exp(s(w,h))

KQ(w)
) used in NCE,

and r(w, h) is log( exp(s(w,h))
Q(w)

) in IS. Hence softmax of g(w, h) and
r(w, h) are the same. The gradient of the sampled softmax objective
function can be computed by

∂Jss
∂θ

=
∂s(w0, h)

∂θ
−

K∑
k=0

exp(r(wk, h))∑K
j=0 exp(r(wj , h)

∂s(wk, h)

∂θ
(11)

It can be seen that the gradient of importance sampling in Equation 7
is very similar to that of sampled softmax in Equation 11. The only
difference is that the term r(w0, h) for the target word is used in the
softmax (the second term) in sampled softmax.

In [5], the authors denoted sampled softmax as importance sam-
pling. However, they are not equivalent according to the above dis-
cussion. Importance sampling is used to approximate the gradient
computation in maximum likelihood. It does not change the objec-
tive function. On the other hand, sampled softmax defines a new

objective function, which is an extension of NCE over multi-class
classification. The experiments presented in Section 5 also shows
that the behavior of importance sampling and sampled softmax are
very different. Nevertheless, these two sampling techniques indeed
have some connection. In importance sampling, if we always use
the target word as one of the noise samples, the resulted gradient
computation is mathematically the same as sampled softmax.

When sampling techniques are used for the training of MaxEnt
LMs, the likelihood evaluation and gradient update computation is
constant proportional to theK noise samples and independent of the
vocabulary size |V|. For a typical choice K = 100 noise words,
the sampling techniques obtain the speedup factor of |V|/K which
is considerably greater than 2

√
|V| for class based MaxEnt LMs of

large vocabulary size (e.g. |V| = 100K words).

4. IMPLEMENTATIONS OF MAXENT LMS

The main purpose of this paper is to investigate the use of sampling
techniques for MaxEnt LM training. We limit the MaxEnt features
to be n-gram and skip-gram features extracted from the target words
and its previous 4 words. Features such as backoff features [13] and
geographic features [20] are not used here. The CPU cluster, Cos-
mos [21]; was used to compute the frequency of various MaxEnt
features and to prune the infrequent features efficiently. Differing
from neural network language models, it is not easy to use GPUs
for the training of MaxEnt LMs as the computation is not uniformly
structured. Most computations happened in MaxEnt LMs are feature
extraction, look-up operations in hash tables and the softmax calcu-
lation. For the sake of efficiency, the training of MaxEnt LMs was
implemented with C++ on CPUs. Stochastic gradient descent (SGD)
was applied to optimize the model parameters of MaxEnt LMs with-
out any regularization. The MaxEnt LM was initialized using the
log unigram probability derived from the training data to get a better
initialization.

MaxEnt LMs are trained in a distributed fashion on multiple ma-
chines. In this paper, we used 30-50 machines (each machine has 16
cores) to train the MaxEnt models. Message Passing Interface (MPI)
was used for communications between machines. The data was split
evenly according to the number of machines. The iterative parameter
mixtures (IPM) [22] algorithm was used to synchronize the training
across machines. Model parameters on each machine were trained
separately over the partition of data and averaged at the end of each
epoch. The parallel training of MaxEnt LMs was similar to [13]. In
each machine, multi-threading was used for minibatch based train-
ing, and in each thread, one training sample was processed within
the minibatch. The minibatch size is set to 16 in this paper.

In this work, the unigram distribution is used as the noise dis-
tribution Q(w). In neural network language models, in order to im-
prove the convergence of NCE training [6, 23], the noise samples
within the same minibatch are normally shared. This is computa-
tionally efficient in neural networks on GPUs. However, in MaxEnt
LMs, each training word has different contexts and different MaxEnt
features are extracted. Sharing noise samples won’t introduce simi-
lar benefits as neural network language models. Therefore, the noise
samples are not shared. As a result, sampling from unigram dis-
tribution is computationally heavy as each predicted word requires
hundreds of different noise samples. In order to address this issue,
we take the training file as the samples generated by the unigram
distribution. Sampling noise samples from unigram distribution can
be reduced to reading a specified number of words from the training
file. This is very efficient. In this paper, the number of noise samples
is fixed to be 100 for each training word.
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5. EXPERIMENTS

In this section, the sampling techniques discussed in Section 3 are
investigated for the training of MaxEnt LMs on two corpora. The
first corpus is the public Google One Billion corpus [24], where the
PPLs are reported and compared to demonstrate the effectiveness
of different sampling techniques. The second corpus is an internal
meeting transcription corpus and the performances of MaxEnt LMs
on speech recognition were reported.

5.1. Experiments on Google One Billion corpus

The model parameters were pruned according to the frequencies of
MaxEnt features. Two types of MaxEnt features were used to train
the MaxEnt LMs, which are n-gram and skip-gram features. Only
the target word and its previous 4 words were used to extract Max-
Ent features. Table 1 shows the perplexities (PPLs) of MaxEnt LMs
with different features (n-gram and skip-gram features) and differ-
ent cutoff thresholds (at least 2 and 3 times). The MaxEnt LM was
trained on 30 machines and the training speed was about 1M words
per second. It takes 12 minutes for one epoch on average. The model
converged in about 40 epochs. Importance sampling is very unsta-
ble and the PPL diverges after the first one or two epochs2, which is
similar to the observation reported in [7]. As discussed in Section 3,
sampled softmax is quite similar to importance sampling. However,
SS was much more stable and converged well. NCE gave compara-
ble PPLs to sampled softmax. We did not implement the class based
MaxEnt LMs in this paper. The PPL results of class based MaxEnt
LMs on the same corpus can be found in [15] and used as references
here. According to the Figure 1 of [15], the PPL of the MaxEnt LM
with 100M parameters is about 105 and for 200M parameters it is
about 98. It can be seen that, given the same number of parameters,
the PPL is comparable to the class based MaxEnt LMs. It indicates
that NCE and sampled softmax work well for the training of Max-
Ent LMs. It is worth noting that MaxEnt LMs are convex models and
have globally optimal solution. However, in NCE training, the nor-
malization term is constrained to be a constant. So the NCE training
probably converged to sub-optimal solution with this constrain. Ac-
cording to the results, the PPL of NCE is slightly worse than sampled
softmax. However, the variance of the normalization term of NCE
training is much smaller than that of that of sampled softmax. This
allows the unnormalized probability to be used at test time for NCE
training.

Freq. MaxEnt #Param Sampling Method
prune feature IS NCE SS

2 n-gram 101M N/A 109.2 103.2
1 204M 100.8 91.8
2 +skip-gram 404M N/A 91.0 89.3
1 815M 84.9 83.5

Table 1. PPL results on Google One Billion corpus with different
sampling techniques using n-gram and skip-gram features

The third and fourth lines in Table 1 show the PPL results of
MaxEnt LMs with skip-gram features as well as n-gram features.
The total number of parameters increases significantly, with slight
but consistent PPL improvements.

2when the number of samples increases to more than 1000, the model is
able to converge to a sensible PPL, but still higher than that of SS and NCE.

5.2. Experiments on Meeting data

An internal meeting transcription system was built for speech recog-
nition experiments. A modified Kneser-Ney smoothed 5-gram LM
with 37M n-grams was used for the first pass decoding to generate
lattices. The vocabulary size for the 5-gram LM is about 1 Mil-
lion. MaxEnt LMs were applied in the second pass rescoring on the
100-best. The MaxEnt LM was trained on about 3 billion words
and 245k most frequent words were chosen as vocabulary for the
MaxEnt LM. The probability of the MaxEnt LM was renormalized
over the 1M vocabulary size of 5-gram LM by simply distributing
the probability of ”<unk>” evenly over all OOV words. The size
of model parameters was pruned to 300M. Log-linear interpolation
was applied to combine the MaxEnt and 5-gram LMs. As discussed
in the previous experiment, importance sampling did not work for
the training of MaxEnt LMs. Hence, only MaxEnt LMs with NCE
and sampled softmax were trained.

Table 2 presents the WER results of sampled softmax and NCE.
For the sampled softmax, the accurate probability was computed via
explicitly normalization over the whole vocabulary. In this way, the
n-best rescoring is time-consuming. While for NCE based models,
the unnormalized probability was applied, which is very efficient
to compute. According to Table 2, it can be seen that the WER
can be reduced by 0.2% absolutely from MaxEnt LMs with n-gram
features only and 0.4% absolutely from MaxEnt LMs with additional
skip-gram features. NCE gave comparable WER performances to
sampled softmax but with a much faster test speed. It demonstrates
the effectiveness of the sampling techniques on MaxEnt LM training.

LM 5-gram LM
MaxEnt LM

n-gram fea. +skip-gram fea.
NCE SS NCE SS

WER 20.72 20.54 20.46 20.31 20.29

Table 2. WER results of MaxEnt LMs trained with NCE and SS,
using n-gram and skip-gram features on meeting data

6. CONCLUSIONS

MaxEnt LMs are powerful language models able to incorporate var-
ious hand-crafted features. In order to train MaxEnt LMs efficiently,
most previous work adopted class based MaxEnt LMs. In this pa-
per, we explored the use of sampling techniques on the training of
maximum entropy based language models (MaxEnt LMs). Three
sampling techniques, importance sampling, noise contrastive esti-
mation (NCE) and sampled softmax, were investigated. Experiments
on the Google One Billion corpus and an internal ASR task demon-
strated the effectiveness of sampled softmax and NCE for MaxEnt
LM training. However, importance sampling is not suitable for Max-
Ent LMs training. To our knowledge, this is the first work to apply
sampling techniques for MaxEnt LMs training. In the future, we
want to explore the use of sampling techniques for MaxEnt LMs
with non-linguistic features, such as geographic features.
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