
GAUSSIAN PROCESS LSTM RECURRENT NEURAL NETWORK
LANGUAGE MODELS FOR SPEECH RECOGNITION

Max W. Y. Lam? Xie Chen† Shoukang Hu? Jianwei Yu? Xunying Liu? Helen Meng?

?The Chinese University of Hong Kong, Hong Kong SAR, China
†Microsoft AI and Research, One Microsoft Way, Redmond, WA, USA

{wylam, skhu, jwyu, xyliu, hmmeng}@se.cuhk.edu.hk, xieche@microsoft.com

ABSTRACT
Recurrent neural network language models (RNNLMs) have shown
superior performance across a range of speech recognition tasks. At
the heart of all RNNLMs, the activation functions play a vital role
to control the information flows and tracking longer history contexts
that are useful for predicting the following words. Long short-term
memory (LSTM) units are well known for such ability and thus
widely used in current RNNLMs. However, the deterministic param-
eter estimates in LSTM RNNLMs are prone to over-fitting and poor
generalization when given limited training data. Furthermore, the
precise forms of activations in LSTM have been largely empirically
set for all cells at a global level. In order to address these issues, this
paper introduces Gaussian process (GP) LSTM RNNLMs. In addi-
tion to modeling parameter uncertainty under a Bayesian framework,
it also allows the optimal forms of gates being automatically learned
for individual LSTM cells. Experiments were conducted on three
tasks: the Penn Treebank (PTB) corpus, Switchboard conversational
telephone speech (SWBD) and the AMI meeting room data. The
proposed GP-LSTM RNNLMs consistently outperform the baseline
LSTM RNNLMs in terms of both perplexity and word error rate.

Index Terms— Neural network language models, LSTM, Gaus-
sian processes, variational inference, speech recognition

1. INTRODUCTION

Language models (LMs) play an important role in speech recogni-
tion to obtain the likelihood of a word sequence wn

1 = (w1, ...,wn):

P (wn
1) = P (w1, ...,wn) =

n∏
t=1

P (wt|wt−1
1) (1)

In general, there are two types of LMs – discrete-space LMs, e.g., n-
grams (NGs) [1, 2], and continuous-space LMs, e.g., neural network
language models (NNLMs) [3, 4, 5].

In particular, this paper focuses on the recurrent neural network
language models (RNNLMs) [5, 6, 7] and the long short-term mem-
ory (LSTM) [8, 9] units, which in recent years have been shown
to define the state-of-the-art performance and give significant im-
provements over the conventional back-off n-grams [10, 11, 12].
LSTM RNNLMs recursively accumulates the sequential information
in the complete word history and are well known for tracking longer
history contexts and thus widely used in current RNNLMs. How-
ever, the fixed, deterministic parameter estimate in standard LSTM

This research was partially funded by Research Grants Council of Hong
Kong General Research grant Fund No.14200218, and the Chinese Univer-
sity of Hong Kong (CUHK) grant No. 4055065.

RNNLMs are prone to over-fitting and poor generalization when
given limited and variable training data. Furthermore, the precise
forms of activations in LSTM have been largely empirically based.

Gaussian process (GP) is a powerful Bayesian model that han-
dles the uncertainty associated with the choice of functions. In our
previous research [13] GPs were successfully applied to deep neu-
ral network based acoustic models. In this paper, they are used to
construct the hidden nodes in LSTM RNNLMs, resulting in a novel
architecture for RNNLMs – GP-LSTM. It allows the optimal forms
of gates to be learned for individual LSTM cells. Experiments were
conducted on three tasks: the Penn Treebank (PTB) corpus, Switch-
board conversational telephone speech (SWBD) and the AMI meet-
ing room data. The proposed GP-LSTM RNNLMs consistently out-
perform the baseline LSTM RNNLMs in terms of both perplexity
and word error rate. To the best of our knowledge, this is the first
work that applies GPs as gates in the LSTM RNNLMs.

The rest of the paper is organized as follows. Section 2 gives
a brief review of RNNLMs. Section 3 describes our proposed GP-
LSTM architecture for RNNLMs. Section 4 presetns the experimen-
tal results for the evaluation of GP-LSTM RNNLMs. Finally, we
conclude our work in Section 5.

2. NEURAL NETWORK LANGUAGE MODELS

This paper focuses on the recurrent neural network language models
(RNNLMs), which computes the word probability as

P (wt|wt−1
1) ≈ P (wt|wt−1,ht−1) , (2)

where ht−1 is the hidden state that tries to encode (wt−2, ...,w1)
into a D-dimensional vector, and D is the number of hidden nodes
that we refer to throughout this paper. In NNLMs, a word wt is often
represented by a N -dimensional one-hot row vector w̃t, where N is
the number of words in the vocabulary. To deal with sparse text data,
the one-hot vector is first projected into aM -dimensional continuous
space [3] where M is the embedding size (usually M � N):

xt = Uw̃>t , (3)

where U is a projection matrix that can be learned during training.
Followed by the word embedding, we obtain the hidden state ht by
recursively applying a gating function: ht = g(ht−1,xt−1), which
is a vector function that controls the amount of information carried
by wt−1 preserved in the “memory” ht. The commonly used archi-
tecture of RNNLMs uses a single sigmoid activation based gating
function parameterized by a weight matrix Θ ∈ RD×(M+D+1):

gsig(xt−1,ht−1) = σ
(
Θ [xt−1,ht−1, 1]>

)
, (4)

7235978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

1 0 0 0 0 0 … 0 0 0 1 0 0 0 … 0 0 0 0 0 1 0 … 0

…

… … …

………

… …
Projection
Layer

Recurrent
Layer

Softmax
Layer

Fig. 1. The logic flow of RNNLMs

where σ(u) = [σ(u1), ..., σ(uD)] for any u ∈ RD while each
σ(ui) = (1 + eui)−1. To align with the common input-output def-
inition in neural networks, we let yt−1 , ht to be the output cor-
responding to input xt−1. We can then compute the approximated
probability taking a Softmax approximation:

P (wt|wt−1,ht−1) =
exp(Vy>t−1)∑

exp(Vy>t−1)
, (5)

where V is another learnable projection matrix that projects the D-
dimensional output back to the N -dimensional vocabulary space,
and exp(v) = [ev1 , ..., evN] for any v ∈ RN . All in all, the logic
flow of RNNLMs is illustrated on Fig. 1.

2.1. Long Short-Term Memory RNNLMs

In practice, it turns out that a simple architecture for RNNLMs (e.g.
using a single gate) does not perform well in learning long-term
dependencies due to the issue of vanishing gradients. Recently,
significant improvements over simple gated RNNLMs have been
achieved by a more complex architecture called long short-term
memory (LSTM) [8] for RNNLMs [9].

In the LSTM architecture, the problem of vanishing gradients
is tackled by introducing another recursively computed variable ct,
namely memory cell, which aims to preserve the information over
longer periods of time. Analogous to the logic gates in an electronic
circuit, at time t four gates are computed – the forget gate ft, the
input gate it, the cell gate c̃t and the output gate ot:

ft =σ
(
Θf [xt−1,ht−1, 1]>

)
(6)

it =σ
(
Θi [xt−1,ht−1, 1]>

)
(7)

c̃t = tanh
(
Θc [xt−1,ht−1, 1]>

)
(8)

ot =σ
(
Θo [xt−1,ht−1, 1]>

)
(9)

where tanh(u) = [tanh(u1), ..., tanh(uD)] for any u ∈ RD . It is
also possible to put ct inside the multiplication with Θf, Θi, Θc and
Θo (a.k.a. the “peephole” connections), however in practice the im-
provements are not significant compared to the substantial increase
of memory requirement. Given the four gating outputs, we update

ct = ft ⊗ ct−1 + it ⊗ c̃t (10)
ht = ot ⊗ tanh(ct), (11)

fo
rg

et
 g

at
e

in
pu

t g
at

e

ce
ll g

at
e

ou
tp

ut
 g

at
e

Concatenate
Elementwise

Operation DuplicateGate

Fig. 2. An example architecture of a LSTM cell

where ⊗ is the Hadamard product. An example LSTM architecture
is shown on Fig. 2.

3. GAUSSIAN PROCESS LSTM RNNLMS

We first start with a formulation of gates g(·) in a more generalized
fashion such that the activation function a(·) is not restricted to have
the same form at each node, leading to

g (z; Θ) = a(Θz>) = [a1 (θ1 • z) , ..., aD (θD • z)] , (12)

where Θ = [θ1, ...,θD]> ∈ RD×(M+D+1) and z = [xt−1,ht−1, 1]
so that the gates in Eqn. (4, 6-9), are just the special cases of g(·).

3.1. Activation Function Combination

To offer flexibility in determining the form of functions, we con-
sider a finite set of K basis functions B = {φ1, ..., φK} where each
φk : R 7→ R can be any activation function such as Sigmoid or Tanh.
However, the degree of freedomK is usually small given the limited
varieties of activations that can be used in combination. An effective
way to expand B is to consider the activation functions parameter-
ized by different weights θd as different basis functions. In which
case the dth node of a gate can be represented by

gd (z;λd,θd) = ad (θd • z;λd) =

K∑
k=1

λk,dφk (θd • z) , (13)

where λd = [λd,1, ..., λd,K] are K basis activation coefficients. We
can view the gates in LSTM as special cases where λd is an one-hot
vector. For the consideration of comparable number of parameters,
we use the same weight matrix for all basis functions in this paper.

3.2. Gaussian Process Activation Functions

To handle the activation weight parameter uncertainty for better gen-
eralization ability, the deterministic form of activation combination
is modified into the following marginalization:

gd (z) =

∫ K∑
k=1

λkdφk (θd • z) p(θd|D) dθd (14)

≈
∫ K∑

k=1

φk (θd • z) p(φk|θd)p(θd|D) dθd, (15)

7236

where under suitable normalization, each parameter λkd can be seen
as an approximation of p(φk|θd), and can be estimated from the
standard cross-entropy training with error back-propagation.

The remaining problem is to find the posterior of activa-
tion weight parameters p(θd|D) given the training dataset D =
{wt−1,wt}nt=2 containing pairs of word contexts and target word.
In our previous work [13], the basis combination of activations was
applied to deep neural network based acoustic models, where a sinu-
soidal basis was used, and the posterior of Θ was approximated by
elementwise i.i.d. Gaussians. We showed that replacing activation
functions by gd(·) in deep neural networks results in a Gaussian
process with generalized spectral kernels [14].

As a means of unifying the notations, we define the Gaussian
process activation functions (GPacts) as

gd (z) =

∫ K∑
k=1

λkdφk (θd • z)
P (D|θd)N (θd; 0, I)

P (D)
dθd, (16)

where N (θd; 0, I) is the non-informative standard Gaussian prior.
Replacing the gates of fixed activation and deterministic weight pa-
rameters in the conventional LSTM cells with the above GPact nodes
leads to the GP-LSTM RNNLM proposed in this paper. However,
here P (D) does not have a closed-form solution so it is necessary to
employ advanced approximation techniques.

3.3. Variational Training for GP-LSTM RNNLMs

In order to handle this issue, variational approximation [15, 16] with
sampling based efficient training approach is used to make the in-
ference part efficient and compatible with the standard backpropa-
gation training. The idea is to find a variational distribution q(Θ) to
approximate p(Θ|D). In this paper, we define q(Θ) as

q(Θd,r) = N (µd,r, exp(γd,r)2) (17)

for d ∈ {1, ..., D}, r ∈ {1, ..., D+M+1}, so that we can update the
distribution parameters µd,r, γd,r to minimize KL{q(Θ)||p(Θ|D)}
– the Kullback-Leibler (KL) divergence [17] that measures the close-
ness of distributions. Since KL divergence is always non-negative,
we can effectively derive an upper bound of cross-entropy (CE) loss:

CE + KL{q(Θ)||p(Θ|D)}
= −Eq(Θ) [logP (D|Θ)]︸ ︷︷ ︸

L1

+ KL{q(Θ)||p(Θ)}︸ ︷︷ ︸
L2

= L, (18)

where the first term can be approximated by Monte-Carlo sampling
on the CE loss, i.e., to draw S samples from q(Θ) using a differen-
tiable expression for the sth sample as Θ

(s)
d,r = µd,r +exp(γd,r)ε

(s)
d,r

with ε(s)d,r ∼ N (0, 1) and then we average over the CE losses pro-
duced by all samples for every training batch of n words:

L1 ≈ −
1

S

S∑
s=1

n∑
t=2

P̂ (wt|wt−1
1) • logP

(
wt|wt−1,ht−1; Θ(s)

)
,

(19)

where P̂ (wt|wt−1
1) ∈ RN is the target word probability vector. It

is worth pointing out that when minibatch training is employed, it
suffices in practice to take only one sample (S = 1) per batch so that
no additional time cost is added to the standard CE training. The
second term can also be expressed in closed-form:

L2 =
1

2

D∑
d=1

M+D+1∑
r=1

µ2
d,r + exp(2γd,r)− 2 log(γd,r)− 1 (20)

since the prior is set to p(Θd,r) = N (0, 1) elementwise. Note that
the gradient computation using backpropagation is applicable to both
L1 and L2. In particular, we have three types of parameters to be
updated in each batch of optimization: (1) all parameters originally
defined in the LSTM RNNLMs, (2) the mean parameter µ, and (3)
the log-scale standard deviation parameter γ. For (1) the calculation
of gradients remain the same that only needs to concern about L1,
whereas for (2) and (3), the gradients are written as

∂L
∂µd,r

=µd,r −
∂L1

∂yt−1

∂yt−1

∂Θ
(s)
d,r

, (21)

∂L
∂γd,r

= exp(2γd,r)− 1

γd,r
− ∂L1

∂yt−1

∂yt−1

∂Θ
(s)
d,r

ε
(s)
d,r, (22)

where the definition of yt−1 is referred back to Eqn. 5.

4. EXPERIMENTS

In this section, we evaluate the performance of GP-LSTM RNNLMs
using the perplexity (PPL) measure and the word error rate (WER)
obtained in automatic speech recognition (ASR) tasks. Both the
LSTM and GP-LSTM language models were implemented using
the Python GPU computing library PyTorch [18], while the code
can be released upon request. For RNNLMs, we used 200 hid-
den nodes in the standard LSTM, and the basis activations B =
{sin, cos,σ, tanh,ReLU} and 150 hidden nodes in GPact to retain
equal number of parameters for a fair comparison. Regarding the
setup of training method for RNNLMs, parameters were updated in
mini-batch optimization (10 sentences per batch) using the typical
stochastic gradient descent (SGD) algorithm with an initial learning
rate of 4. Under this setup, the average processed words per second
in LSTM and GP-LSTM are 7438.23 and 4626.94, respectively, on
the NVIDIA Tesla K80 GPU device. It is notable that our method
was implemented to conduct experiments, and can be further op-
timized for practical use. In our experiments, all RNNLMs were
interpolated with n-gram LMs to complement with each other as in
many state-of-the-art systems [4, 5, 9, 19, 20, 21]:

P (wt|wt−1
1) = λPNG(wt|wt−1

1) + (1− λ)PRNN(wt|wt−1
1),

(23)

where λ is the global weight of the n-gram LM PNG(·) that can be
optimized using the EM algorithm on a validation set.

4.1. Experiments on Penn Treebank Corpus

Language Model PPL PPL(+4G)
4-gram 141.7 -
Standard LSTM 114.4 99.7
(P1) GPact as the forget gate 115.2 92.4
(P2) GPact as the input gate 115.1 91.7
(P3) GPact as the cell gate 111.9 88.3
(P4) GPact as the output gate 109.4 88.3
(P5) GPact as the ct gate 111.2 88.2
(P6) GPact as a new gate for ht−1 108.2 88.1
(P7) GPact as a new gate for xt 112.0 90.0

Table 1. Perplexities (PPL) attained on PTB test set by applying
GPact to different positions inside a LSTM cell

Because of practical limitation, in this paper we only consider
replacing or adding a gate using GPact. To start with, we examine

7237

fo
rg

et
 g

at
e

in
pu

t g
at

e

ce
ll g

at
e

ou
tp

ut
 g

at
e

Concatenate
Elementwise

Operation Duplicate
Possible Positions

for GPact

P1 P2 P3 P4

P5

P6

P7

Fig. 3. Seven possible positions to use a Gaussian process activation
(GPact) (highlighted as yellow) inside a LSTM cell

the efficacy of GPact at different positions in LSTM cell as shown in
Fig. 3 using the Penn TreeBank (PTB) corpus [22], which consists
of 10K vocabulary, 930K words for training, 74K words for devel-
opment, and 82K words for testing. The resulting PPLs achieved by
the 4-gram LM, baseline LSTM RNNLM and GP-LSTMs of plac-
ing GPact at positions (P1-7) are shown on Table 1. It is interesting
to see that, no matter where we place GPact at, the resulting GP-
LSTM consistently improves over the standard LSTM after interpo-
lating with 4-gram LM (the 3rd column in Table 1). Meanwhile,
placing GPact at P6 gave the best performance out of 7 possible po-
sitions. Hence, in all GP-LSTM RNNLMs of the following experi-
ments GPact was placed at P6.

4.2. Experiments on Conversational Telephone Speech

Language Model PPL WER (%)
swbd callhm

4-gram 80.6 12.1 23.9
LSTM 89.3 11.4 23.9
GP-LSTM 87.2 11.3 23.9
4-gram + LSTM 71.7 11.3 23.2
4-gram + GP-LSTM 70.1 11.0 23.1
4-gram + LSTM + GP-LSTM 67.2 10.8 23.0

Table 2. Perplexities (PPL) and word error rates (WER) on SWBD
test speech attained by 4-gram, LSTM and GP-LSTM

To evaluate the performance of GP-LSTM RNNLMs in speech
recognition, we used a 300-hour conversational telephone speech
dataset on the Switchboard (SWBD) English system consisting of
3.6M words for training and 50K words for development. The per-
plexities performed by 4-gram, standatd LSTM and GP-LSTM on
the development set are shown on Table 2. MPE-trained stacked hy-
brid DNN-HMM acoustic models constructed using the HTK toolkit
v3.5 [23] were used. Both the top and bottom level DNNs contain 6
hidden layers (base on sigmoid activations) of 2000 nodes each, ex-
cept the 2nd last bottleneck (BN) layer in the bottom level DNN con-
tains 39 nodes used to produce BN features. The Bottleneck DNN
was CE trained using 40-dimensional log Mel-filter bank (FBK) fea-
tures spliced over a 9-frame window covering 4 frames to left and
right as the input, and decision tree clustered 12k triphone state la-
bels as the output layer targets. Finally, the WERs on recognizing
Switchboard swbd and CallHome callhm test speeches are shown
on Table 2, where GP-LSTM outperforms the standard LSTM with
WER reductions of 0.5% and 0.2% (bottom line in Table 2) in swbd

and callhm, respectively, when linearly combined with both the 4-
gram LM and the LSTM RNNLM.

4.3. Experiments on Meeting Transcription Task

Language Model PPL WER (%)
dev eval

4-gram 111.1 30.4 31.0
LSTM 83.4 29.4 30.0
GP-LSTM 81.2 29.3 29.8
4-gram + LSTM 76.8 29.3 29.8
4-gram + GP-LSTM 74.2 29.0 29.4
4-gram + LSTM + GP-LSTM 71.2 28.7 29.3

Table 3. Perplexities (PPL) and word error rates (WER) on AMI
test speech attained by 4-gram, LSTM and GP-LSTM

The efficacy of GP-LSTM was also investigated in the highly
challenging meeting transcription task [24, 25, 26] on the 59-hour
Augmented Multi-party Interaction (AMI) corpus [27]. We used
a mixture of text corpora with 26M words (AMI, Fisher 1/2 and
SWBD) and 41K words in vocabulary to train the language model.
For acoustic modeling, we trained a Tandem system [28] and a Hy-
brid system [29] separately and then combined them for better per-
formance using joint decoding [30]. All systems were based on
state-clustered decision-tree triphone models with 6000 states. For
the setup of Tandem system, an initial GMM system with PLP fea-
ture was built in a way similar to [25]. 13-dimensional PLP features
were extracted with the first and second temporal differentials, yield-
ing a 39-dimensional feature vector. The MPE criterion was used to
train the initial system. This initial system, was then extended to a
Tandem system by appending 26 BN features learned from a DNN
with four hidden layers (2000 nodes per layer) to the PLP features
after a semi-tied covariance (STC) transform, giving 65-dimensional
Tandem feature. The setup of DNN in Hybrid DNN-HMM system
is the same as the setup of DNN in the Tandem system, where the
DNN was pretrained discriminatively layer by layer and fine-tuned
with several epochs until the frame accuracy converges in cross val-
idation set. 9 consecutive frames are concatenated together as input
to the neural networks. The Tandem features were also adopted as
input static feature of the DNN and for the alignment for the targets
in the Hybrid system. Speaker adaptive training based on CMLLR
[31] was also used to adapt to the target test speaker for all systems.
We report our performances on the AMI dev and eval set in Table 3.
The results again suggest that the proposed GP-LSTM archecture is
superior over the standard LSTM for RNNLMs in terms of both PPL
and WER. The best system (bottom line in Table 3) interpolating the
baseline LSTM and GP-LSTM RNNLMs outperformed the baseline
LSTM RNNLM by 0.5%-0.6% absolute.

5. CONCLUSION

To conclude, consistent improvements were obtained using our pro-
posed GP-LSTM RNNLMs, especially when they are interpolated
with the n-grams. The noticeably larger improvements achieved
by n-grams interpolated GP-LSTM RNNLMs can be explained by
the responsibility of n-grams in interpolation with LSTM RNNLMs,
i.e., to complement the overly exploited long-term memory with re-
cent word histories. While GP-LSTM RNNLMs are better at select-
ing long-term information from the complete word history than the
LSTM, it is sensible that n-grams interpolated GP-LSTM RNNLMs
leads to a more significant improvement.

7238

6. REFERENCES

[1] R. Kneser and H. Ney, “Improved backing-off for m-gram lan-
guage modeling,” in icassp, 1995, vol. 1, p. 181e4.

[2] S. F. Chen and J. Goodman, “An empirical study of smooth-
ing techniques for language modeling,” Computer Speech &
Language, vol. 13, no. 4, pp. 359–394, 1999.

[3] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural
probabilistic language model,” Journal of machine learning
research, vol. 3, no. Feb, pp. 1137–1155, 2003.

[4] H. Schwenk, “Continuous space language models,” Computer
Speech & Language, vol. 21, no. 3, pp. 492–518, 2007.

[5] T. Mikolov, M. Karafiát, L. Burget, F. Černockỳ, and S. Khu-
danpur, “Recurrent neural network based language model,” in
Eleventh Annual Conference of the International Speech Com-
munication Association, 2010.

[6] T. Mikolov, S. Kombrink, L. Burget, J. Černockỳ, and S. Khu-
danpur, “Extensions of recurrent neural network language
model,” in Acoustics, Speech and Signal Processing (ICASSP),
2011 IEEE International Conference on. IEEE, 2011, pp.
5528–5531.

[7] M. Sundermeyer, I. Oparin, J. L. Gauvain, B. Freiberg,
R. Schlüter, and H. Ney, “Comparison of feedforward and
recurrent neural network language models,” in Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE Interna-
tional Conference on. IEEE, 2013, pp. 8430–8434.

[8] S. Hochreiter and J. Schmidhuber, “Lstm can solve hard long
time lag problems,” in Advances in neural information pro-
cessing systems, 1997, pp. 473–479.

[9] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural net-
works for language modeling,” in Thirteenth annual confer-
ence of the international speech communication association,
2012.

[10] T. Mikolov, A. Deoras, S. Kombrink, L. Burget, and
J. Černockỳ, “Empirical evaluation and combination of ad-
vanced language modeling techniques,” in Twelfth Annual
Conference of the International Speech Communication Asso-
ciation, 2011.

[11] C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn,
and T. Robinson, “One billion word benchmark for measur-
ing progress in statistical language modeling,” arXiv preprint
arXiv:1312.3005, 2013.

[12] M. Sundermeyer, H. Ney, and R. Schlüter, “From feedfor-
ward to recurrent lstm neural networks for language modeling,”
IEEE Transactions on Audio, Speech, and Language Process-
ing, vol. 23, no. 3, pp. 517–529, 2015.

[13] M. W. Y. Lam, S. Hu, X. Xie, S. Liu, J. Yu, R. Su, X. Liu,
and H. Meng, “Gaussian process neural networks for speech
recognition,” Proc. Interspeech 2018, pp. 1778–1782, 2018.

[14] Y. Kom Samo and S. Roberts, “Generalized spectral kernels,”
arXiv preprint arXiv:1506.02236, 2015.

[15] M I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul,
“An introduction to variational methods for graphical models,”
Machine learning, vol. 37, no. 2, pp. 183–233, 1999.

[16] D. P. Kingma and M. Welling, “Auto-encoding variational
bayes,” arXiv preprint arXiv:1312.6114, 2013.

[17] S. Kullback and R. A. Leibler, “On information and suffi-
ciency,” The annals of mathematical statistics, vol. 22, no.
1, pp. 79–86, 1951.

[18] A. Paszke et al., “Automatic differentiation in pytorch,” in
NIPS 2017 Workshop Autodiff, 2017.

[19] J. Park, X. Liu, M. J. F. Gales, and P. C. Woodland, “Improved
neural network based language modelling and adaptation,” in
Eleventh Annual Conference of the International Speech Com-
munication Association, 2010.

[20] A. Emami and L. Mangu, “Empirical study of neural net-
work language models for arabic speech recognition,” in Au-
tomatic Speech Recognition & Understanding, 2007. ASRU.
IEEE Workshop on. IEEE, 2007, pp. 147–152.

[21] H.-S. Le, I. Oparin, A. Allauzen, J.-L. Gauvain, and F. Yvon,
“Structured output layer neural network language models for
speech recognition,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 21, no. 1, pp. 197–206, 2013.

[22] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neu-
ral network regularization,” arXiv preprint arXiv:1409.2329,
2014.

[23] S. Young, G. Evermann, M. J. F. Gales, T. Hain, D. Kershaw,
X. Liu, G. Moore, J. Odell, D. Ollason, D. Povey, A. Ragni,
V. Valtchev, P. Woodland, and C. Zhang, The HTK Book (ver-
sion 3.5a), 2015.

[24] T. Hain, L. Burget, J. Dines, G. Garau, V. Wan, M. Karafi,
J. Vepa, and M. Lincoln, “The ami system for the transcription
of speech in meetings,” in Acoustics, Speech and Signal Pro-
cessing, 2007. ICASSP 2007. IEEE International Conference
on. IEEE, 2007, vol. 4, pp. IV–357.

[25] C. Breslin, K. K. Chin, M. J. F. Gales, and K. Knill, “Inte-
grated online speaker clustering and adaptation,” in Twelfth
Annual Conference of the International Speech Communica-
tion Association, 2011.

[26] T. Hain, L. Burget, J. Dines, P. N. Garner, F. Grézl, A. El Han-
nani, M. Huijbregts, M. Karafiat, M. Lincoln, and V. Wan,
“Transcribing meetings with the amida systems,” IEEE Trans-
actions on Audio, Speech, and Language Processing, vol. 20,
no. 2, pp. 486–498, 2012.

[27] J. Carletta, S. Ashby, S. Bourban, M. Flynn, M. Guillemot,
T. Hain, J. Kadlec, V. Karaiskos, W. Kraaij, M. Kronenthal,
et al., “The ami meeting corpus: A pre-announcement,” in
International workshop on machine learning for multimodal
interaction. Springer, 2005, pp. 28–39.

[28] F. Grezl and P. Fousek, “Optimizing bottle-neck features for
lvcsr.,” in ICASSP, 2008, vol. 8, pp. 4729–4732.

[29] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent
pre-trained deep neural networks for large-vocabulary speech
recognition,” IEEE Transactions on audio, speech, and lan-
guage processing, vol. 20, no. 1, pp. 30–42, 2012.

[30] H. Wang, A. Ragni, M. J. F. Gales, K. M. Knill, P. C. Wood-
land, and C. Zhang, “Joint decoding of tandem and hybrid
systems for improved keyword spotting on low resource lan-
guages,” 2015.

[31] M. J. F. Gales et al., “Maximum likelihood linear transforma-
tions for hmm-based speech recognition,” Computer speech &
language, vol. 12, no. 2, pp. 75–98, 1998.

7239

		2019-03-18T11:04:18-0500
	Preflight Ticket Signature

