CURIOSITY-DRIVEN REINFORCEMENT LEARNING FOR DIALOGUE MANAGEMENT

Paula Wesselmann, Yen-Chen Wu

Cambridge University Engineering Department
Trumpington Street, Cambridge CB2 1PZ, UK

ABSTRACT

In this paper we describe the use of curiosity rewards for dia-
logue policy learning of goal oriented dialogues via reinforce-
ment learning. Using curiosity improves state-action space
exploration and helps overcome reward sparsity. Addition-
ally, for goal oriented dialogues it makes sense to perform
inherently curious actions in order to gain knowledge about
the user goal. We show that intrinsic curiosity rewards can re-
place random e-greedy exploration and stabilize training. The
best results are achieved when curiosity rewards are combined
with e-greedy exploration.

Index Terms— curiosity-driven, reinforcement learning,
dialogue management, intrinsic rewards, exploration

1. INTRODUCTION

Initially dialogue systems were build using inflexible hand-
crafted decision rules, which brings limitations and does not
allow for these systems to behave intelligently. Reinforce-
ment learning (RL) allows learning from interaction by maxi-
mizing rewards [1], thus removing the need for manual rules.
The problem is that these rewards are often noisy, sparse or
completely non-existent. Therefore, the use of intrinsic re-
wards, generated by the system itself, is proposed [2], [3].

An agent learning via RL, learns to behave my maximiz-
ing the expected sum of rewards. Usually rewards are given to
the system externally, reinforcing good behavior and/or pun-
ishing bad behavior. In the context of dialogue systems the
rewards come from the users, who rate the quality of the di-
alogue. Users often do not like to give feedback and have
different perceptions of good and bad, which results in sparse
and inconsistent rewards. In order to learn desirable behav-
ior it is beneficial for a spoken dialogue system (SDS) to have
an intrinsic source of reward. Intrinsic curiosity is a consis-
tent reward signal and also helps replace inefficient e-greedy
methods for exploration. Curiosity-driven learning does not
require random exploration, since the agent acts with the aim
to explore new belief-states and such exploration is key for
data efficient learning.
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We combine the current work on deep RL for dialogue
policy optimization for goal oriented dialogues [4] with work
on self-supervised state prediction errors as intrinsic curios-
ity reward signal [5]. We use belief-state prediction error as
an intrinsic reward signal for the dialogue management (DM)
module of the PyDial dialogue system [6] with ACER policy
learning as introduced by [4]. If the system is able to correctly
predict what belief-state it will be in after performing an ac-
tion, that action was not curious and no reward is given. But
if the system learns something new, that is, it was not able to
predict the next belief-state, the prediction error is given as a
reward for being ’curious’.

2. DIALOGUE MANAGEMENT

The DM is the core component responsible for the system’s
behavior. It is made up of two units, the Belief Tracker and
the Policy. The DM can be described as the brain of the SDS,
where belief tracking is responsible for memory, and policy
for making decisions, sending signals on what actions to take,
which are then executed.

The policy regulates what actions are executed given
the system’s current knowledge or belief-state. The DM
has to deal with uncertainty coming from the automatic
speech recognition (ASR) and natural language understand-
ing (NLU) units of the SDS as well as from the users directly.
Therefore the states are belief-states, accounting for uncer-
tainly in the system. Policy 7 is a deterministic decision rule
mapping a belief-state b; into action a; = 7(b;). In every turn
of the dialogue the dialogue tracker updates its belief about
the users goal and its memory about the dialogue, the belief-
state b. The current belief-state b; is the input for the policy
to generate a response to the user, a;. The policy is learned
via deep RL, and is chosen to maximize the total reward; that
is we chose the policy with the optimal ()-function:

T—t

Q(b,a) = E[Zykrt+kbt =ba;=a (1)
k=0

7*(b) = argmax Q*(b, a). (2)

where T' is the last turn of the dialogue, ¢ is the current
turn and -y is the discount factor for future rewards. The
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@-function returns the expected sum of rewards given belief-
state b and action a. 7*(b) is the optimal policy, meaning it
gives the best action a to take when in belief-state b, in order
to maximize the expected return.

The actor critic with experience replay (ACER) method
[4], approximates both, the policy-function 7 (actor) and Q-
function (critic) as Deep Neural Networks (DNNs). This is
an off-policy actor critic method that alternates between actor
improvement, which aims to improve the current policy, and
critic evaluation, which evaluates the current policy with the
Q-function. Experience replay is used to increase the sample-
efficiency of the algorithm. The importance sampling ensures
the accuracy of the estimates and the trust region policy opti-
mization (TRPO) stabilizes the learning. In its original form
it utilizes e-greedy exploration.

3. INTRINSIC MOTIVATION

Human learning and development often is not goal oriented,
but driven by intrinsic motivation such as curiosity. Curios-
ity is a motivation to explore the unknown, searching for
new knowledge and continuous improvement. Curious or
exploratory behavior enables an agent to learn about its en-
vironment and relationship between the agent’s actions, its
current belief-state, and its environment. Therefore, by being
curious an agent is able to gain new knowledge and skills,
even when the rewards are rare or deceptive [7]. Intrinsic
curiosity for RL was first introduced in [8]. Since then dif-
ferent metrics to measure curiosity have been introduced and
curiosity-driven RL is successfully used for many different
machine learning problems.

4. RELATED WORK

State prediction error is a popular metric used for intrinsic
curiosity rewards in different RL applications [8, 9, 10, 5];
it is used to overcome reward sparsity and for efficient state-
action space exploration for tasks such as gaming and learning
robotic motor skills, but has not been applied to dialogue pol-
icy learning yet. Closely related measures of curiosity used
as intrinsic reward signals are prediction uncertainty [11, 12]
and improvement [13]. Both approaches also train a forward
model, learning about the environment while training the pol-
icy. Other measures of curiosity include count based explo-
ration with tabular RL and pseudo state visitation counts de-
rived from density models [14], allowing to generalize count-
based exploration to non-tabular cases.

5. CURIOSITY REWARDS FOR DIALOGUE
MANAGEMENT

Intrinsic motivation is generated by the agent itself, using an
Intrinsic Curiosity Module (ICM). The intrinsically generated
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reward can be used in combination with extrinsic reward sig-
nals coming from the environment. The ICM is a part of the
DM and outputs a reward signal at every dialogue turn (as il-
lustrated in Fig. 1). The ICM takes action a., belief-state b;,
and belief-state by as inputs. Output of the ICM is the state
prediction error, which can be used as reward for curiosity.

The ICM is adapted from [5]. This section partly mirrors
their method for ”Self-supervised prediction for exploration”.
The ICM (Fig. 1) consists of an inverse model, predicting the
action a, given states b; and b, 1, which is used to optimize
the belief-state feature encoding and a forward model predict-
ing future state ¢(b, 1) given action a; and state ¢(b;). The
prediction error is the L2?-norm of difference between é(bt+1)
and ¢(bs+1) (see Equation 5).

5.1. Inverse Model

Using an inverse model to predict states in a learned feature
space was proposed by [5]. It deals with the prediction of raw
images that include random, unpredictable features. Learning
a feature space helps to focus on features that are essential in
order to make a good prediction. This feature space is learned
by training a DNN with two sub-modules: first encoding raw
state b into a feature vector ¢(b;) and second taking ¢(b;)
and ¢(b;+1) as feature encoded inputs and predicting action
a¢ taken to move from belief state by to by41:

ar = g(@(br), ¢(be11); 01) ©)

Function g is learned by training a NN, where a, is the pre-
dicted estimate of action a; and the network parameters 6
are trained to minimize the discrepancy between predicted
and actual actions, L;(d,a:). In our case the output of g is
a soft-max distribution across all possible summary actions.

When using curiosity rewards for belief state-action space
exploration in DM, a good feature representation is more gen-
eral, e.g. a feature represents that the food type has been in-
formed, rather than the specific type of food that has been
informed. The system cannot learn to predict which food the
user is going to request, but it can learn that after requesting
information about which food a user wants, there is a high
probability that the system will be informed about the food
type. On the other hand, when using curiosity rewards to en-
courage curious actions, the full belief-state vector is needed
and for every new dialogue we want the agent to be curious
about the new user goal and specific slots/ features.

5.2. Forward Model

Core element of the ICM is the forward model, a NN that is
trained to predict the next state b ; in the feature space, given
the feature encoding of the current belief-state ¢(b;) and the
action a; executed in this state:

P(beg1) = f(P(be), ar; 0F) 4)
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Fig. 1: Tllustrated formulation for self-supervised prediction as curiosity in context with the DM. In belief-state b; the agent
interacts with the user by executing an action a; sampled from policy 7 to get to state b;1. The ICM encodes belief-states b;
and b into features ¢(b;) and ¢(by+1), that are trained to predict a; (inverse model). a; and ¢(b;) are inputs for the forward
model predicting the feature representation é(bt+1) of by+1. The prediction error is used as intrinsic reward signal 7 which can
be used in addition to external rewards 7¢. (this model is adapted from [5])

where ¢(b;41) is the predicted estimate of ¢(b;1). The net-
work parameters 6 are trained to optimize:

yin L (8(0es1), 60012)) = 5119(bes1) — 60w} )

The intrinsic reward signal is the prediction error multiplied
by a scaling factor 7, 7 > 0:

i = g”d;(btﬂ) — ¢(bes1)l[3 =nLr (6)

Forward and inverse dynamic losses are jointly optimized:

91%2 (1-pB)L;+ BLp (7

where 0 < 3 < 1is weighting the inverse model loss against
the forward model loss.

5.3. Intrinsic Curiosity Module without feature encoding

In addition to the ICM described above, we use a simpler ICM
using the same principle of belief-state prediction error as
intrinsic reward, but without feature encoding and therefore
without the need for an inverse model. The forward model
now uses raw belief-sates b; and by directly. Equation 4 for
the NN becomes: 3t+1 = f(bt, at; 0F) and the parameters 6
are trained to minimize Lp (b1, l;t+1).

5.4. Not-informative action penalty

Instead of rewarding curious actions, one can penalize actions
that have predictable outcomes, as it is the case when the sys-
tem repeats itself. For this approach the prediction error is

calculated as the cosine loss:

~ P(berr) @ d(bita)
o (e - @ (bera)l|
where the dot-product of the belief-state ¢(b;41) and its pre-

diction ¢(by 1) is divided by the product of their magnitudes.
A fixed penalty is assigned when L falls below threshold w.

®)

5.5. Pre-trained Curiosity vs. Jointly Trained Curiosity

When jointly training the curiosity model and policy, in the
early stages of training, curiosity rewards are high for all ac-
tions. In the later stages, curiosity rewards will only remain
for actions that prompt unpredictable reactions from the user.
We want the curiosity reward to be used for efficient explo-
ration. The reward given while the ICM learns to make pre-
dictions and learning a feature space is not accurate. Training
the dialogue policy and ICM together means that dialogue
policy learning is trying to optimize those random rewards
at the beginning of training, slowing down policy learning.
We propose pre-training the ICM on a small data-set to make
learning more data efficient.

6. EXPERIMENTS

We compare performance of the same policy learning al-
gorithm with and without intrinsic curiosity rewards. We
also compare results to the state-of-the-art GP-SARSA algo-
rithm [15]. All dialogues are in the Cambridge Restaurant
domain (where users can access information about restaurants
in Cambridge, UK), the domain includes 100 venues with 6
slots each, out of which 3 are requestable by the system. The
SDS in this domain has a belief-state vector of size 268 and
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Fig. 2: Learning curves of the success rates for four different settings for the use of intrinsic curiosity rewards.

4000 trg dialogues 1000 pre-trg +3000 trg
GP-SARSA ACER no feat. cur+eps
Reward 9.8 10.2 11.4 11.4
SR (%) 90.8 86.9 92.9 93.3
Turns 8.4 7.2 7.1 7.3

Table 1: Final rewards, success rates and number of turns.

can perform 16 summary actions including actions such as
inform, request_food or bye. We use a simulated
user with semantic error rate (SER) of 15%. The simulated
user is comprised of a behavior component to produce a
semantic act, and an error simulator, to produce a list of se-
mantic hypotheses derived from the semantic act, simulating
the error coming from the ASR and NLU channels in a SDS
[16]. The external reward received for a completed dialogue
that successfully reached the user goal (i.e. provided the de-
sired information about venue along with additional details
such as phone number or address) is 7. = 20 — n, where n
is the number of turns in a dialogue. Unsuccessful dialogues
only receive the turn penalty r. = —n. When using the
curiosity methods, total reward received is r; = r. + 7.

Four broad settings are evaluated: (a) no feature encod-
ing; (b) feature encoding; (c) curiosity + e-greedy;and (d)
e-greedy + not-informative action penalty. The training is
done in 20 intervals of 200 dialogues each, after every inter-
val the current policy is tested with 500 dialogues. Where
e-greedy exploration is used, it is set at ¢ = 5, meaning that
percentage of the time the action is chosen at random. No
random actions are performed during testing. In the plots the
shaded area depicts the mean =+ the standard deviation over
10 different random seeds. (Note that average rewards for the
baseline and different curiosity methods are not comparable.)

(a) No feature encoding: We apply the prediction error for
predicting raw belief-states as curiosity reward. Results (Fig.
2a) show that using this curiosity method is somewhat less
data efficient then the ACER baseline, but converges to a
higher final success rate of 92.9% (see Table 1) with less
instability in the final results. The final average number of
turns in a dialogue is 7.1.

(b) With feature encoding: By adding feature encoding
for the belief-state prediction, variance in success rates dur-
ing the first 2000 dialogues of training increases, but final
results are stable (Fig. 2b) at around 93%. Feature encoding
does not seem to improve predictions, but rather makes the
model more complex and less data efficient. The final average
number of turns in a dialogue is 7.3.

(c) Curiosity + e-greedy: When using the curiosity reward
for exploration in addition to e-greedy exploration, learning
becomes more stable and data efficient (Fig. 2c). This method
achieves with 93.3% the highest final average success rate out
of our experiments (see Table 1). The final average number
of turns in a dialogue is 7.3.

(d) e-greedy + not-informative action penalty: The idea
of giving a penalty for accurate predictions is to solve the
observed problem of the system unnecessary repeating itself
and asking questions the user has already informed the sys-
tem about especially in the early stages of learning. Results
(Fig. 2d) show that the learning becomes more data efficient.
The final average success rate is 92.1%, similar to the other
curiosity reward methods. The final average number of turns
in a dialogue is 7.1, the lowest together with method (a).

7. CONCLUSION

This work focuses on the application of intrinsic curiosity re-
wards and penalties related to belief-state prediction error for
dialogue management in addition to external rewards given
for the completion of successful dialogues. We are able to
show an improvement in success rates when using curiosity
over e-greedy exploration or as additional exploration tool.
Experimenting with intrinsic reward modeling, we find fixed
intrinsic penalties for non-curious actions to be more efficient
than rewards for curious actions. This shows that it is easier to
learn to avoid specific behavior than to learn to behave in new
undiscovered ways. Future steps would be to optimize the
scaling factor for curiosity rewards (or penalties) and improve
the belief-state prediction model. It would also be interesting
to see how this method works with real user interactions.
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