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ABSTRACT
Question answering (QA) has become a key capability for
voice enabled personal assistants to automatically answer
various user questions. However, the development of a spoken
language interface for QA in a new domain is time consuming
and requires a lot of human labors. Thus, it is crucially
desirable to design an end-to-end system, referred to as
SliQA, that can facilitate developers to easily and quickly
build a QA interface from scratch and output a high quality
plug-and-play QA engine. In this paper, we take the first
step of SliQA system design, named SliQA-I, to support
answering factoid questions regarding an entity over existing
knowledge graphs. SliQA-I incorporates a novel iterative
human-in-the-loop question generator and an enhanced deep
coupled QA engine, thereby requiring light human workload.
We implement the real system and evaluate it on three
domains from different aspects. The results show that the QA
performance of SliQA-I achieves up to 3.58% accuracy gain
compared with baseline approaches which use existing QA
engine on human generated data. More importantly, we show
that SliQA-I only takes as low as 0.025 second to generate a
question which has similar quality as human generated ones
in terms of both naturalness and grammatical correctness.
Index Terms: spoken language interface, question generation,
question answering, cold start, end-to-end system

1. INTRODUCTION

Artificially intelligent voice-enabled personal assistants (PA)
have been emerging in our daily life, such as Alexa, Google
Assistant, Siri, etc. The capabilities of answering user questions,
referred to as QA skills, are one of key business drivers for
PAs and the number grows rapidly [1]. The goal of building
a QA skill is to develop a natural/spoken language interface
such that users can use it to interact with PAs using voice
to ask questions. However, the development of QA skills in
existing PAs has two drawbacks: first, it requires developers to
manually generate a large amount and varieties of questions;
secondly, it only supports question understanding and heavily
relies on third-party services to derive answers. Thus, it is
highly desirable to help developers build new QA skills easily
and quickly without depending on other third-parties.

With the rising of structured knowledge graphs (KG)
such as DBpedia [2] and Freebase [3], automatic question
answering using KG has attracted increasing attention recently
from both the industrial and academic communities. The
most relevant work [4] developed an end-to-end QA system,
which however requires an input of corpora with already
disambiguated entities. Other works, including question
generation [4, 5, 6] and automatic question answering engine
[7, 8, 9, 10], require heavy human workload to generate
questions or handcrafted templates, making it hard to adapt
into new domains. More importantly, in practice, these
approaches cannot correctly answer user questions due to
the failure of understanding various user expressions.

To overcome the above limitations, we design an Spoken
language interface for Question Answering (SliQA-I) system
to guide developers to quickly build up a new QA skill
from scratch. Taking a new domain name as input from
developers, SliQA-I generates factoid questions with their
corresponding answers iteratively via a novel hybrid rule-
based and data-driven approach; and uses them to train an
enhanced QA engine with novel skip connection layers. A
software developer only needs to iteratively prune incorrect
generated sentences and then can directly use the well-trained
QA engine output, rendering SliQA-I practically very useful.

2. RELATED WORK

Question answering thrived with IBM Watson [11] and
attracted rising research attentions over knowledge graphs.

Question generator: Olney et al. [5] and Duma et al. [12]
predefined set of relationship specific question templates.
Ngonga Ngomo et al. [13] tackled such query verbalization
problem for SPARQL. Seyler et al. [4] improved the query
verbalization which however requires corpora with annotations
of already disambiguated entities. Serban et al. [6] trained
a recurrent neural network on large-scale question-answer
pair dataset for question generation. Unfortunately, these
approaches cannot be utilized in practice due to either heavy
human workload or lack of required inputs.

QA engine: Most recent works [7, 8, 9, 10, 14] are
designed based on predefined templates. However, they
usually fail to understand and correctly answer many various
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expressions of a question. Another closely relevant deep
learning based approach [15] using RNN is the state-of-
the-art spoken language understanding (SLU) engine to best
understand the user expressions and answer factoid questions.
Yet, the assumption of the existence of large-scale annotated
training data is unrealistic in practice.

3. SliQA-I SYSTEM

The goal of SliQA-I system is to facilitate software developers
to build the QA skill in new domains from scratch. The
output QA engine can answer user questions, in the format
of spoken language, about the attributes of entities in this
new domain over knowledge graphs (KG). A KG, such as
DBpedia [2], YAGO [16], Freebase [3], consists of entities
that are linked to each other with relationships, i.e., a set
of triples (〈subject〉, 〈predicate〉, 〈object〉) representing the
facts, e.g., (〈the Louvre〉, 〈LocatedIn〉, 〈Paris〉). The focus
of our SliQA-I system is to answer basic factoid questions
(questions concerned with the subject and relationship of a
fact and answered by the object of the fact).

3.1. Iterative Tagged QA Generator

As one may have inferred from the title, our SliQA-I system
is designed based on two key ideas: First, to tackle cold start,
we iteratively generate new sentences with human-in-the-
loop pruning of incorrect ones and finally generate question
answer pairs. Technically, our approach decomposes the
complex question generation task into small subtasks and
solves them individually. From developers’ perspective, the
total amount of their workload will be largely reduced since
the next iteration generates more sentences only based on the
previously selected correct ones. Second, to overcome the
semantic ambiguity of entities, we generate sentences with
tagged entities as well as tagged answers.

Next, we introduce the details of our proposed iterative
QA generation algorithm, from the rule-based iteration flow
to a data-driven subroutine.

Rule-based Iteration Design. Given an answer (tagged
attribute), we consider generating two types of questions
containing the main tagged entity, wh-questions and commands.
The key idea of our iterative generator is to decompose the
task into subtasks (in Figure 1) and tackle each one by one.
In each iteration i, we generate sentences Si using a hybrid
rule-based and data-driven approach and output the correct
ones S′i after human pruning.

Iteration 1. Entity Expansion. We start with the tagged
entity @E defined by the input domain name and expand it
into statements and phrases with each of its tagged attributes
in KG, where the tagged attributes are the common concepts
of entities which connects to one of the entity instances
of @E. For each new tagged attribute @A, we insert @A
after @E to generate statements (e.g., @LANDMARK

Iteration 2. Question Generation 

Iteration 1. Entity Expansion

Statement Generation Phrase Generation

Wh-question Generation Command Generation

Attribute Keyword Paraphrasing

@landmark is based in @location

@landmark is in @location

@landmark begins in @location

the location of @landmark

the location named @landmark

the location into @landmark

where is @landmark based in

which location is @landmark based in

where is the location named @landmark

where and the location of @landmark 

show me the location of @landmark

find the location named @landmark

get the location of @landmark

make sure the location of @landmark

which area is @landmark based in

which region is @landmark in

which locale is @landmark in

show me the place of @landmark

where is the site named @landmark

show me the section of @landmark

Iteration 3. Paraphrasing

Fig. 1: Iterative QA Generator in SliQA-I System. Grey parts
are the sample outputs of each component, in which the
strikethrough parts are bad sentences pruned by software
developers. The underlined parts are the filled words using data-
driven tagged sentence filler.

@LOCATION) and insert it type keyword A before @E to
generate phrases (e.g., the location @LANDMARK). Here,
the joiner words are considered as word placeholders “ ” (or
called blanks) which will be generated using tagged sentence
filler algorithm. For each statement or phrase s ∈ S1, the
expanded tagged attribute @Awill be the answer of questions
later generated on top of s.

Iteration 2. Question Generation. As shown in Figure
1, we further generate the wh-questions from both labeled
sentences and phrases from iteration 1. For each s ∈ S′1
associated with an answer @A, in addition to using “which”
and its answer type keyword A, we first determine which
other wh words to use based on the following mapping
of the answer or its concepts: @INFORMATION: what ;
@LOCATION: where; @QUANTITY: how much. For each
statement, its corresponding wh-questions can be derived via
subject-auxiliary inversion by replacing its tagged attribute
with the corresponding wh word. For each phrase, we generate
its predicate for wh-questions and commands, by utilizing the
tagged sentence filler algorithm to concatenate the phrase
with its corresponding wh word (e.g., where the location
of @LANDMARK) and identify verbs (e.g., the location of
@LANDMARK).

Iteration 3. Paraphrasing. This iteration aims to generate
the varieties of type keyword A for each attribute @A.
Specifically, we consider two approaches: (1) we utilize the
tagged sentence filler to capture the semantics of a sentence
and find the replacement of type keyword A (e.g., which is
@LANDMARK in). The result is ranked by the frequency of
appearance in all questions w.r.t. the same answer. (2) we also
find the N(= 10) nearest neighbors of A in the word vector
space (GloVe [17]) via cosine similarity, so as to detect the
alternative words semantically related to A.
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Data-driven Tagged Sentence Filler. As a key data-
driven subroutine, this module takes a tagged sentence
(sentence with tagged entities) with blanks (number of blanks
as parameters) U as the input and outputs the complete tagged
sentence with all blanks filled by natural language words,
called filler words. We first instantiate the tagged entities in
U by selecting the most frequent entities in vocabulary V
of the language model, which have their concepts matching
the tagged entity and is in vocabulary of the pre-trained
language model to avoid tackling out of vocabulary problem.
Based on the underlying idea that good filler words should be
generated repeatedly by different entity instances, we fill up
the blanks in all sentences with different instantiated entities
and rank the filler words by the frequency of appearances in
all instantiated sentences.

3.2. Deep Coupled QA Engine

Thanks to SliQA-I generated large-scale training data, we
then design a novel deep learning based QA engine, called
Deep Coupled QA Engine (in Figure 2). It contains two parts
via additional tightly coupled skip connections: (1) a bi-
directional LSTM based query-understanding network; and
(2) a LSTM based answer generator.

Query-Understanding Network (QUN). Once a question
(represented as a word sequence) comes into our QA Engine,
it will first pass through an QUN, which is the bottom part
under the dotted line in Figure 2. Each word xi will be read in
one by one and transferred into an word vector vi through an
embedding layer. This word vector vi will be used twice, one
is as an input to a bidirectional LSTM, in order to generate
the encoded hidden state vector hi; the other is as part of the
input to our answer generator (AG) by skip connection to
convey word level information for deriving a better answer.

The bi-directional LSTM reads in the word vector sequence
v = {v1, · · · , vn} in two directions, where n is the number
of words in a sequence. Forward and backward LSTMs
take in the sequence forwardly and backwardly to generate
two groups of forward and backward hidden states, hf =
{hf1, · · · , hfn} and hb = {hb1, · · · , hbn}. The hidden state
hi is a concatenation of hfi and hbi, i.e., hi = [hfi, hbi],
which will be used as one part of the input to the answer
generator (AG). An attention hidden state hatt is generated
as an augmented signal to capture the contextual information
from the word sequence, as hi,att = Σn

j=1αi,jhj where
αi,j is a standard weighted coefficient computed by αi,j =
e(qi,j)/

∑n
k=1 e(qi,k), and qi,j is obtained by a separate

feed-forward network fnn as qi,j = fnn(hj , oi−1). The
concatenation of word vector from vi, hidden state hi and
attention signal hi,att, as si = [vi, hi, hi,att] will be the
output of the query-understanding network (QUN) as well as
the input to the following answer generator (AG) network.

Answer Generator (AG). AG aims to derive the answer
as a pair of tag and instance. In the question example ’How

Attention Layer
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Bi-directional

LSTM
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Answer Generator:

LSTM
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Connection
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Query-Understanding

Network
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Fig. 2: Deep Coupled QA Engine

large is @landmark’ of Figure 2, ‘@area: 72,735 square
meters’ is used as the answer pair when the entity instance is
‘the Louvre’.

AG is a LSTM which takes the output of QUN as its input.
Its hidden state oi is generated as:

oi = grnn(oi−1, vi, hi, hi,att) (1)
where grnn(·) is AG’s RNN network. The output ŷ of AG is
the best answer with the highest probability based on the last
state of LSTM:

ŷ = arg max
y′

P (y
′
|on−1, vn, hn, hn,att) (2)

where n is the length of the word sequence; and y
′

represents
the predicted distribution at the last time step n. The loss
function for training our QA engine is the cross entropy for
the softmax of P (y

′ |on−1, vn, hn, hn,att).
Remarks: The major improvement of our QA engine is

the design of novel skip connection directly from input word
vectors to answer generator such that the word level semantics
between question and answer can be directly captured.

4. EXPERIMENTAL EVALUATION

We evaluate SliQA-I system from three aspects: (1) evaluate
the quality of our SliQA-I generated dataset against the
baseline dataset collected from real human developers; (2)
evaluate the human workload to generate the dataset; and (3)
evaluate the performance of our deep coupled QA engine
against the modified state-of-the-art RNN SLU model [15].

4.1. Data Schema and Collection

We collect datasets in three different domains: (a) landmark,
(b) restaurant and (c) food. We choose these three domains in
the travel user scenario where a user is likely to ask questions
about a landmark, local restaurant and food information. In
each domain, we determine the set of tagged attributes based
on their availability in FreeBase. These tagged attributes are
further divided into two types, categorical and scalar. We
collect two types of datasets using the same set of entities,
attributes and their instances: (1) SliQA-I questions generated
by our SliQA-I system; and (2) human questions generated
by crowd sourced human volunteers manually.
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4.2. Evaluation of QA Generator

4.2.1. Data Quality Evaluation

Subjective Evaluation. We evaluate the collected question
answer pairs by soliciting judgments from another group
of crowd sourced raters, following the experimental design
in [18]. Each turker rater is presented 10 questions w.r.t.
the same answer. Turkers rate each question on a 5 point
Likert scale [19] as to whether the question is natural and
grammatically correct. We then asked them to comparatively
evaluate 10 questions at a time for their overall goodness, also
on a 5 point Likert scale. We observe that SliQA-I generated
dataset achieves quite promising performance in terms of all
three metrics, and with more unique questions.

Table 1: Human Evaluation Results
Datasets Naturalness Grammar Overall Unique Questions

SliQA-I 3.39 3.71 3.40 4,004
Human 3.43 3.70 3.42 272

Objective Evaluation. We conform to the ultimate goal
of our SliQA-I system to objectively evaluate the quality
of generated QA dataset based on the performance of QA
engine. Again, to maximally mitigate the bias, we test on both
state-of-the-art model [15] and our QA engine. As shown in
Table 2, in all three domains, both QA engines trained on
SliQA-I dataset outperform those trained on human dataset.
The accuracy gain is up to 2.14 and 2.32 in SliQA-I and RNN
QA engines respectively. This is because SliQA-I dataset
has larger varieties of questions but with similar qualities
compared with the questions in human dataset.

4.2.2. Human Workload Evaluation

First, we analyze the cognitive load via preliminary qualitative
analysis from turker generators who use our SliQA-I system.
Specifically, the turkers filled out the survey regarding different
types of cognitive load [20]. In terms of intrinsic cognitive
load about the inherent difficulty level to use SliQA-I system,
the turkers concluded SliQA-I as a much easier system to use
compared with existing industrial tools which require heavy
human workload to manually generate questions as well as
academic solution which requires natural language expertise
the turkers do not usually possess. For extraneous cognitive
load, the thumb up/down interface to make human pruning
much easier. The turkers can also mark all questions correct
by pressing one thumb up/down to select all sentences. At
last, the turkers are also satisfied with the reduced germane
cognitive load due to the iterative pruning design in SliQA-
I which dramatically minimizes the whole pruning effort
by generating more questions only based on the correct
ones in previous iteration. As shown in Figure 3, the time
consumption for human pruning is reduced drastically iteration
by iteration.
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Fig. 3: Time Consumption for Human Pruning

4.3. Evaluation of QA Engine

We train the BiLSTM RNN [15] and our QA engines separately
on these three datasets. One may notice in Table 2 that we
use a larger size of SliQA-I data than human data for training.
This is benefited from the quick generation capability of our
SliQA-I generator. To compare it fairly, we also randomly
sampled the same number of training data from the SliQA-
I generated data as that of the human collected ones. The
results are shown in the 5th column in Table 2.

Table 2: QA Engine Performance Comparison
Training data Human SliQA-I

Dataset QA engine Size ACC ACC Size ACC

Landmark SliQA-I 356 96.21% 97.56% 6584 98.35%
RNN 356 95.53% 96.24% 6584 97.85%

Restaurant SliQA-I 648 97.15% 97.45% 11404 98.78%
RNN 648 95.20% 96.90% 11404 97.23%

Food SliQA-I 628 97.98% 98.54% 6036 98.65%
RNN 628 96.29% 97.12% 6036 97.12%

Table 2 report the results. We observe that all QA engines
trained on SliQA-I generated data achieve better test accuracy
than those trained on human generated baseline data. It
can be observed that the augmented dataset does help on
improving the model accuracy. However, even we eliminate
the performance impact due to more generated training data,
our SliQA generated data still gives a better performance
using different training engines. This is because SliQA-I
generates a dataset which has a better coverage and balance
of the varieties of questions. We also observe that our deep
coupled QA engine outperforms RNN based engine in all
domains, since our skip connection helps to better capture
direct relations between question words and its answer.

5. CONCLUSION

This paper takes the first step, called SliQA-I, towards the
development of a cold-start end-to-end system (SliQA) for
question-answering spoken language interface. SliQA-I,
consisting of a novel iterative human-in-the-loop question
generator and an enhanced deep coupled QA engine, is
designed to build up a QA skill in a new domain that supports
answering basic factoid questions, i.e., questions regarding
the attributes of an entity. The results show its significant
improvement over existing approaches in terms of QA engine
and data quality as well as human labor efficiency.
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