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ABSTRACT

Speech-to-text translation (ST) refers to transforming the
audio in source language to the text in target language. Main-
stream solutions for such tasks are to cascade automatic
speech recognition with machine translation, for which the
transcriptions of the source language are needed in training.
End-to-end approaches for ST tasks have been investigated
because of not only technical interests such as to achieve
globally optimized solution, but the need for ST tasks for
the many source languages worldwide which do not have
written form. In this paper, we propose a new end-to-end ST
framework with two decoders to handle the relatively deeper
relationships between the source language audio and target
language text. The first-pass decoder generates some use-
ful latent representations, and the second-pass decoder then
integrates the output of both the encoder and the first-pass
decoder to generate the text translation in target language.
Only paired source language audio and target language text
are used in training. Preliminary experiments on several lan-
guage pairs showed improved performance, and offered some
initial analysis.

Index Terms— Speech-to-Text Translation, End-to-End
Model, Unwritten Language

1. INTRODUCTION

Speech-to-text translation (ST) refers to transforming the au-
dio in source language to the text in target language. Conven-
tional approaches for ST perform machine translation (MT)
on the top of the automatic speech recognition (ASR) out-
put. In these approaches, source language transcriptions are
always needed regardless of whether ASR and MT are trained
separately or jointly [1, 2]. However, among the thousands of
languages worldwide, most of them do not have an acknowl-
edged written form nor even been well described in docu-
ments [3]. These include not only many indigenous as well
as aboriginal languages without a literary tradition, but many
dialects used only for daily conversations instead of written
communication. In order to eliminate the need for source lan-
guage transcriptions, in addition to other technical consider-
ation such as achieving globally optimized solutions, directly
trained on source language audio paired with target language

text translations was considered end-to-end ST [4, 5, 6, 7],
for example, using the sequence-to-sequence model with at-
tention mechanism [4].

In this paper, we propose to insert an extra decoder into
the typical encoder-decoder architecture [8, 9] to better handle
the relatively deeper relationships between source language
audio and target language text. In this way, the encoder is
followed by two decoders, but only paired source language
audio and target language text are given during training. The
first-pass decoder may generate some useful latent represen-
tations referred to as intermedia here (may be close to ASR
transcriptions mixed with subword units of the source lan-
guage), based on which the second-pass decoder generates
the target language text. Similar two-pass decoder architec-
ture was used in text-based MT [10, 11] before, but has not
yet reported on ST. Initial experiments on several language
pairs showed improved performance.

2. PROPOSED APPROACH

As in Fig. 1, the proposed approach includes three compo-
nents: an encoder E with parameter set θe, a first-pass decoder
D1, and a second-pass decoder D2 respectively with parame-
ter sets θ1 and θ2. The input is an acoustic feature sequence
in source language of length T , x = {x1, x2, ..., xT }, while
the output is a word sequence in target language of length M ,
y = {y1, y2, ..., yM}.

2.1. The encoder

The encoder at the left lower part of Fig. 1 is the same as those
used in prior works [1, 2, 4, 5, 7], based on bidirectional Long
Short-Term Memory (LSTM). A input sequence x of length T
is encoded into T hidden states h = {h1, h2, · · · , hT }, where
hi = [

−→
h i,
←−
h i] for the bidirectional parts. More precisely, the

forward encoder generates
−→
h i = LSTM(xi,

−→
h i−1) while

the backward encoder generates
←−
h i = LSTM(xi,

←−
h i+1),

where
−→
h 0 and

←−
h T+1 are zero vectors.

2.2. The first-pass decoder

The first-pass decoder D1 at the right lower part of Fig. 1 is
a conventional decoder with attention. It generates a series of
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Fig. 1. The proposed framework for speech-to-text translation (ST). The orange, brown, and blue parts are encoder, first-pass
and second-pass decoder respectively. The input is the acoustic feature sequence in source language, x = {x1, x2, ..., xT },
while the output is the word sequence in target language, y = {y1, y2, ..., yM}.

N hidden states ŝ = {ŝ1, · · · , ŝj , · · · , ŝN}, and a first-pass
output sequence of length N , ŷ = {ŷ1, · · · , ŷj , · · · , ŷN}. At
time index j within ŝ or ŷ, context information c1j is obtained
via the attention over the hidden state of the encoder E , h =
{h1, h2, · · · , hT }, as shown at the bottom of Fig. 1:

c1j =

T∑
i=1

α1
j,ihi,

α1
j,i =

exp(e1j,i)∑T
i′=1 exp(e

1
j,i′)

,

e1j,i = (v1α)
T tanh(W 1

ŝ ŝj−1 +W 1
hhi),

(1)

where v1α, W 1
ŝ and W 1

h are the parameters of D1, denoted by
θ1. The hidden state is ŝj = LSTM([yt−1; c

1
j ], ŝj−1). The

first hidden state ŝ1 is initialized by the last hidden state hT
of the encoder E , as shown by the arrow connecting them.
After obtaining ŝj , an affine transformation is applied on the
concatenated vector [ŝj ; c1j ; ŷj−1]. The results of the transfor-
mation are then fed into a softmax layer, and the output ŷj is
sampled from the multinomial distribution obtained.

2.3. The second-pass decoder

Here the hidden states h and ŝ of the encoder E and the first-
pass decoder are used by the second-pass decoder D2 to gen-
erate a hidden state sequence s = {s1, · · · , st, · · · , sM}, and
a output sequence y = {y1, · · · , yt, · · · , yM}, where M is
the length of the output sequence.

At time index twithin s or y,D2 takes the previous hidden
state st−1 generated by itself, the contextual information c2t
from the encoder E , and the contextual information cdt from
the first-pass decoder D1 as inputs. c2t is generated in exactly
same way in Eq. (1), except ŝj−1 in Eq. (1) is replaced by st−1

here and the different set of model parameters, v2α, W 2
s and

W 2
h , as shown at the middle part of Fig. 1. cdt is the context

vector used in D2 at time index t based on the attention over
the hidden states ŝ of D1, as shown at the midden right of

Fig. 1:

cdt =

N∑
i=1

αdt,iŝi,

αdt,i =
exp(edt,i)∑N
i′=1 exp(e

d
t,i′)

,

edt,i = (vdα)
T tanh(W d

s st−1 +W d
ŝ ŝi),

(2)

where vdα, W d
s , and W d

ŝ are the parameters of D2, denoted
by θ2. Then, we calculate the hidden state st in D2 as st =
LSTM([yt−1; c

2
t ; c

d
t ], st−1). The first hidden state s1 is ini-

tialized based on the last hidden hT and ŝN of E and D1,
as shown by the arrows i Fig. 1. The concatenated vector
[st; c

2
t ; c

d
t ; yt−1] is finally transformed to generate yt, the out-

put sequence at time index t. So D2 actually takes complete
information represented by hidden states ŝ in D1 and h in E
through the initialization of s1 and the contextual vectors cdt
and c2t aggregating the information extracted in D1 and E .

2.4. Training

D = {(x, y∗)} denotes the training corpus, where x is an
acoustic feature sequence in source language, and y∗ is the
reference text transcription of x in target language or the
learning target for the output of D2. We never know learning
target for D1 since it is not given, but in the experiments we
found also using y∗ as the learning target of D1 is helpful.
The objective is therefore below:
J (θe, θ1, θ2) =
1
|D|

∑
(x,y∗)∈D

{λ logP (y∗|θe, θ1, θ2) + (1− λ) logP (y∗|θe, θ1)},

(3)
where |D| is the size ofD. The first term is to jointly train the
encoder and the two decoders to maximize the log likelihood
of the reference transcription y∗ at the output of D2. The
second term is to maximize the log likelihood of the reference
transcription y∗ at the output of D1. λ is a hyper-parameter
close to 1.
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Taiwanese Mboshi Fisher/Callhome
Emitting type Character Subword Subword
Encoder layers 1 1 3
Encoder hidden size 64 128 256
Decoder hidden size 128 256 256

Table 1. Individual settings for each corpus.

3. EXPERIMENTS

Four different datasets were used in the initial experiments.

3.1. Corpus

Taiwanese, often called Min-Nan, is one out of the hundreds
of dialect for Chinese [12], for which there does not exist a
unified orthographic system. The Taiwanese-Chinese dataset1

was collected from a local television program company, in-
cluding approximately 120 hours of Taiwanese audio spoken
by a single speaker, Dharma Master Cheng Yen, and the cor-
responding 120K sentences of Chinese text translations. We
split this corpus into training, development, and testing sets
with 80%, 10%, and 10% respectively.

Mboshi is a Bantu language spoken in the Republic of
Congo. It is endangered and lacks a stable orthographic
system. The Mboshi-French dataset was collected during a
language documentation process [13], including 5517 utter-
ances (about 4.4 hours) in Mboshi audio aligned to French
text translations. The Mboshi speech was produced by three
speakers in Congo-Brazzaville. Following the prior work
[1, 2], we randomly sampled 100 utterances from training
data taken as development set, and used the original develop-
ment set as testing set.

Fisher and Callhome Spanish-English Speech Transla-
tion corpus (LDC2014T23) [14] contained English reference
translations and Spanish audio in the Fisher-Spanish corpus
(LDC2010S01, LDC2010T04) and Callhome-Spanish corpus
(LDC96S35, LDC96T17), for telephone conversations be-
tween mostly native Spanish speakers in a variety of dialects.
The Fisher-Spanish dataset consisted of 819 transcribed con-
versations (roughly 160 hours), while the Callhome-Spanish
corpus comprised 120 spontaneous conversations (roughly 20
hours); both aligned at the utterance level. Following [5, 14],
we trained our models on Fisher train set, and evaluated on
Fisher test set and Callhome evltest set. While evaluating the
BLEU-4 scores, we used the four references for Fisher and
one reference for Callhome.

3.2. Implementation

The models were implemented with Tensor2tensor [15]. We
used a dropout rate of 0.2, and trained the models using Adam

1The Taiwanese-Chinese dataset was provided by Da Ai Television, Tai-
wan and was consolidated by Taiwan AI Labs.
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Fig. 2. Character-level BLEU-4 scores for different λ on
Taiwanese-Chinese testing set.

with an initial learning rate of 0.001. L2 weight decay was
used with a weight of 10−6. Batch size for each step varied
depending on audio length [16], but never exceeding larger
than 128 due to the memory constraints. Beam search with
beam size 10 was performed during inference. We also found
length normalization [17] did not lead to better performance
for all corpora, so we set it to 0.0 for Taiwanese-Chinese and
0.6 for others. The other settings are in Table 1.

Following the prior work [5], we used 80 channel log mel
filterbank features extracted from 25ms windows with a hop
size of 10ms. We also concatenated them with delta and delta-
delta features organized with a shape of T×80×3. To reduce
computational complexity in the following layers, they fur-
ther went through two consecutive convolutional layers, each
comprising 128 kernels with shape 3×3 and a stride of 2×2,
followed by layer normalization and ReLU activation. Hence,
the time scale was downsampled by a factor of 4. For Fisher
and Callhome corpus, following the prior work [5], the down-
sampled features additionally went through the bidirectional
convolutional LSTM [18], convolving across frequency axis
with kernel size 3. This new set of features was then fed into
the bidirectional LSTM encoder described in Section 2.1.

For the Taiwanese-Chinese corpus, all punctuations were
removed, and we did not segment the character sequences into
words. So the models are character-based, with a total of 2956
distinct characters. For the Mboshi-French dataset, the French
transcriptions have been tokenized and cleaned up. We de-
tokenized them, and adopted subword-based models, with a
total of 2356 distinct subword units. For Fisher and Callhome
corpus, following the prior work [5], we lowered all letters
and removed all punctuations excluding the apostrophes. We
also used subword-based models with a total of 9841 distinct
subword units.

3.3. Results

We first tuned the trade-off factor λ in Eq. (3) on the Taiwanese-
Chinese testing set. We increased λ from 0.5 to 1.0 with in-
crement of 0.1. The model did not work when λ = 1.0, or the
first-pass decoder played an important role here. The results
in Fig. 2 showed the best performance was achieved when
λ = 0.8. Therefore, we used λ = 0.8 for later experiments
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(A) Ground truth (B) Proposed (C) Proposed (first-pass) (D)Mseq2seq(1)

(i) 沒有漏失的正法 沒有漏失的正法 沒老息的正法 沒有老實的正法
(no missing orthodox dharma) (no missing orthodox dharma) (no old breath dharma) (no honest orthodox dharma)

(ii) bô lāu sit ê tsı̀ng huat bô lāu sit ê tsı̀ng huat bô lāu sit ê tsı̀ng huat bô láu sit ê tsı̀ng huat
(i) 自然增長大愛 自然增長大愛 自然前長大愛 自然清重大愛

(naturally growing philanthropy) (naturally growing philanthropy) (naturally front growing philanthropy) (naturally clear and heavy philanthropy)
(ii) tsū jiân tsing tióng tuā ài tsū jiân tsing tióng tuā ài tsū jiân tsı̂ng tiông tuā ài tsū jiân tshing tiông tuā ài

Table 2. Example output sequences for the different approaches: (i) the output Chinese character sequence (with English
translation in the parentheses), (ii) the phoneme sequence when the character sequence in (i) was produced in Taiwanese.

Taiwanese Mboshi Fisher test Callhome evltest
Mseq2seq(1) 59.61 4.09 36.74 13.51
Mseq2seq(2) 59.62 3.96 37.50 13.99
Proposed 61.54 6.55 38.30 14.46

Table 3. BLEU-4 scores for each corpus, character-level for
Taiwanese-Chinese, and word-level for others.

on all corpora.
We present the results on the four corpora considered,

compared with two baselines both using attentional sequence-
to-sequence model but with one decoder only instead of two
here: (i) this decoder with one layer of LSTMs, denoted by
Mseq2seq(1); and (ii) this decoder with two stacked LSTM
layers, denoted by Mseq2seq(2). We considered Mseq2seq(2)
because our model has two decoders. We used t2t-bleu to
evaluate BLEU-4 score [19]. Character-level BLEU-4 score
was used for Taiwanese-Chinese corpus (since each Chinese
character has its meaning), and word-level BLEU-4 score
(subword units grouped into words for evaluation) for the
others.

The results are in Table 3, from which we can see that the
proposed approach clearly outperformed the baselines. The
BLEU-4 scores varied significantly across the different cor-
pora, obviously because these corpora are very different. For
example, the Taiwanese-Chinese corpus was large but pro-
duced by a single speaker with a relatively higher quality
recording, so the score is much higher.

Because Taiwanese can be considered as a dialect of Chi-
nese, and therefore the Taiwanese-Chinese task may be con-
sidered as a speech recognition task and evaluated in char-
acter error rate (CER). This is listed in the first column of
Table 4, where a lower CER was achieved by the proposed
approach. Also, because BLEU-4 score is integrated from
n-gram precision rates (n = 1, 2, 3, 4), we noted for the low-
resourced Mboshi-French corpus, the very low BLEU-4 score
was due to the very poor 3-gram and 4-gram match, although
the 1-gram match was not too bad. This is reported in the
second column of Table 4, in which we see even for the low-
resourced Mboshi-French corpus, the proposed approach also
offered better 1,2,3,4-gram precisions than the baselines.

We further trained a recurrent neural network based lan-
guage model [20] with hidden size 256 using RNNLM toolkit
[21] to evaluate the perplexity of the Taiwanese-Chinese test-
ing set output sequences. The results are listed in Table 5,

CER (Taiwanese) n-gram precisions (Mboshi)
Mseq2seq(1) 0.2701 17.3 / 5.6 / 2.7 / 1.2
Mseq2seq(2) 0.2672 16.3 / 5.3 / 2.4 / 1.2
Proposed 0.2531 21.4 / 8.6 / 4.8 / 3.1

Table 4. CER for Taiwanese-Chinese and n-gram precisions
for Mboshi-French.

Ground truth Mseq2seq(1) Mseq2seq(2) Proposed (first-pass) Proposed
29.73 38.11 40.34 59.15 34.43

Table 5. Perplexity of output sequences for Taiwanese-
Chinese.

where we see not only the proposed approach gave the lowest
perplexity, but the output sequences from the first-pass de-
coder had much highest perplexity, but significantly reduced
by the second-pass decoder.

3.4. Examples

We further analyze the results with two typical examples in
the Taiwanese-Chinese corpus in Table 2, where part (i) is
the output Chinese character sequence (with English trans-
lation in the parentheses), while row (ii) is the phoneme se-
quence when the character sequence in (i) was produced in
Taiwanese. The results of the proposed approach but using
the first-pass decoder only and the baseline Mseq2seq(1) are
also listed in columns (C)(D). We can see that the first-pass
decoder of the proposed approach and Mseq2seq(1) (columns
(C)(D)) both generated partly incorrect character sequence in
part (i), but these character sequences sounded close to the au-
dio it produced in Taiwanese. So the first-pass decoder of the
proposed approach andMseq2seq(1) are likely to “transcribe”
the audio by “Chinese characters with Taiwanese pronunci-
ations”. With the second-pass decoder applied in addition,
these “transcriptions” were corrected to some degree.

4. CONCLUSION

In this work, we consider the end-to-end speech-to-text trans-
lation task and extend the conventional sequence-to-sequence
model by adding an additional second-pass decoder, which
considers both the encoder output and the first-pass decoder
output simultaneously. Improved performance was obtained
and some analysis of the results are reported in this paper.
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