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ABSTRACT 
 
Speech separation, which has been a challenging task for 
decades, especially at low signal-to-noise ratios (SNRs), can 
be cast as a classification problem. In such adverse acoustic 
environment, extracting robust features from noisy mixtures 
is crucial for successful classification. In the past studies, 
features representing temporal dynamics, known as delta 
features, have been widely used. Combining basic features 
with their deltas yields better speech separation results than 
using basic features alone. In this study, the commonly used 
delta feature was modified according to the characteristics of 
auditory perception, which included auditory processing on 
spectral change and spectral contrast. Therefore, we proposed 
a feature which integrated spectrotemporal context via 
replacing the commonly used delta feature by spectral change 
feature and spectral contrast feature. Experimental results 
showed that the proposed feature could produce better speech 
segregation performance than the common delta feature. 

Index Terms— Speech separation, spectral change 
feature, spectral contrast feature 
 

1. INTRODUCTION 
 
Monaural speech separation is regarded as a challenging task, 
especially in low signal-to-noise (SNR) conditions. In recent 
studies, the ideal binary mask (IBM) was suggested as the 
computational objective of the speech separation task [1]. 
The IBM is a time-frequency (T-F) binary mask, constructed 
from premixed target and noise.  A mask value 1 for a T-F 
unit indicates that the SNR within the unit exceeds a threshold 
(target dominant), and 0 otherwise (noise dominant). 
Therefore, the speech separation can be formulated as a 
classification problem [2]. The evaluation on this approach 
showed it could improve speech intelligibility for human 
listeners, including hearing-impaired people [3,4]. 

The design of classifier and robustness of features 
extracted from mixtures mainly determine the performance 
of such classification-based speech separation. This work 
focused on robust features for classification. In the speech 
separation community, many acoustic features have been 
explored, such as amplitude modulation spectrogram (AMS), 
perceptual linear prediction (PLP), gammatone feature (GF) 
and more recently multi-resolution cochleagram feature 

(MRCG), each having its own advantages. In this study, we 
aimed to explore a robust feature according to characteristics 
of auditory perception due to the excellent performance on 
speech recognition in noise for human beings. 

The auditory system, like other perceptual systems, is 
especially sensitive to abrupt changes in stimuli [5,6,7,8]. 
Several findings have suggested that most important 
information in speech is carried in spectral changes over time, 
rather than in static spectral per se. It has been reported that 
stimuli with dynamic spectral changes at their onsets leads to 
better identification of articulation place [9]. Hence, the 
ability to detect spectral changes over time may be beneficial 
for speech separation from noisy mixtures.  

In addition, the ability for humankind to recognize 
speech in noise almost depends partly on auditory functions 
such as frequency selective, which refers to the ability of 
auditory system to resolve a complex sound into its frequency 
components [10,11]. Some perceptual-important components, 
like the formant frequencies, will be smeared and not 
sufficiently prominent in the presence of background noise 
since the noise fills in the valley between spectral peaks of 
target speech, resulting in reduced spectral contrasts and 
further reduced frequency selective. 

Due to the importance of temporal changes and spectral 
contrasts for human speech recognition in background noise, 
we proposed a feature that integrated the above 
spectrotemporal context via combining basic features with 
their spectral change and spectral contrast. In previous studies, 
spectrotemporal context has already been considered and 
used in the speech separation task. Kim et al. proposed a 
combined feature where in addition to the basic AMS feature, 
delta features were also included to capture feature variations 
across time and frequency, leading to a better speech 
separation result [3]. MRCG feature, proposed by Chen et al., 
was meant to embody the spectrotemporal context 
systematically and resulted in the best separation 
performance among many popular features [12]. However, 
the operations like difference and average were performed on 
existing features in the above works, which were not linked 
with the characteristics of auditory perception, including 
auditory processing on spectral changes and spectral 
contrasts. Therefore, spectral change feature and spectral 
contrast feature were extracted and added in our proposed 
feature as spectrotemporal context in order to facilitate 
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speech separation in consistence with mechanism of auditory 
processing on speech. 

 
2. FEATURE DESCRIPTION 

 
2.1. Spectral change feature 
 
Temporal delta feature was first extracted to capture the basic 
feature variations across time, which was denoted by,  

∆𝑔# 𝑛, 𝑘 = 𝑔 𝑛, 𝑘 − 𝑔 𝑛 − 1, 𝑘 ,				𝑛 = 2, … , 𝑁,    (1) 
where 𝑔 𝑛, 𝑘  was the feature extracted from a specific T-F 
unit with a time index n and a sub-band index k. N was the 
total number of frames. Two typical acoustic features, MRCG 
and GF were used here separately to produce 𝑔 𝑛, 𝑘  as they 
showed promising advantages for DNN-based speech 
separation when comparing with other features [12]. 

Then, our previously proposed spectral change 
evaluation (SCE) method [13] was applied to ∆𝑔# 𝑛, 𝑘  to 
derive the final spectral change feature 𝑐ℎ𝑎𝑛𝑔𝑒 𝑛, 𝑘 . 
Specifically, temporal delta feature 	∆𝑔# 𝑛, 𝑘  was next 
convoluted with a Difference of Gaussian (DoG) function to 
produce a spectral change function (SCF), in order to remove 
minor irregularities in the delta feature as well as to 
emphasize the difference between feature peaks and valleys. 

To take the influence of preceding frames into account, a 
Gain function,	𝐺𝑎𝑖𝑛 𝑛, 𝑘  for a certain frame n and sub-band 
k, was defined by a weighted average of the SCF over several 
preceding frames m with a weight (𝜉 < 1) that progressively 
declined for frames that were earlier in time than the current 
frame, 

𝐺𝑎𝑖𝑛 𝑛, 𝑘 =
𝑆𝐶𝐹;,< + 𝜉𝑆𝐶𝐹;>?,< + ⋯+ 𝜉A𝑆𝐶𝐹;>A,<

1 + 𝜉 + ⋯+ 𝜉A
, (2) 

Then, the Gain function was scaled by a factor S, which was 
used to produce a controllable spectral change feature 
𝑐ℎ𝑎𝑛𝑔𝑒 𝑛, 𝑘 . 
 
2.2. Spectral contrast feature 
 
spectral contrast feature was derived by applying a typical 
spectral contrast evaluation (SE) method proposed by Baer et 
al. to 𝑔 𝑛, 𝑘  [14]. Until producing the Gain function, the 
processing steps were the same as the SCE except that the 
input was 𝑔 𝑛, 𝑘 	here, rather than ∆𝑔# 𝑛, 𝑘 . Gain function 
here was derived according to the idea that for a given frame 
and sub-band where the spectral contrast function (SF) was 
positive, 𝑔 𝑛, 𝑘 	 was increased in value; where the SF was 
negative, 𝑔 𝑛, 𝑘 	 was decreased in value. Hence, the Gain 
function was denoted by,  

𝐺𝑎𝑖𝑛 𝑛, 𝑘 = 𝑙𝑜𝑔 𝑎𝑏𝑠 𝑆𝐹 + 1 ×𝑠𝑖𝑔𝑛 𝑆𝐹 ,     (3) 
The value of 𝐺𝑎𝑖𝑛 𝑛, 𝑘  was then scale by a certain factor E 
to produce a controllable spectral contrast feature 
𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑛, 𝑘 	here. 

The overall proposed feature vector was given by, 
[𝑔 𝑛, 𝑘 , 𝑐ℎ𝑎𝑛𝑔𝑒 𝑛, 𝑘 , 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑛, 𝑘 ],         (4) 

we named the proposed feature as GF_proposed or 
MRCG_proposed according to different 𝑔 𝑛, 𝑘 . 

2.3. Analysis of the proposed feature 
 
In the proposed feature, there were three components. 
𝑔 𝑛, 𝑘 	contained the local information embedded in each T-
F unit while spectral change feature captured dynamic cues 
over time and spectral contrast feature highlighted the 
important components across frequency. The latter two 
features indicated the spectrotemporal context.  

A visualization of each feature component extracted from 
premixed clean speech was given in Fig.1. Spectral change 
feature in panel (a) encoded not only the abrupt changes at 
onsets of syllables, but also the successive changes over time, 
such as the perceptual-important formant transitions with 
relatively low energy, which were marked with black 
rectangular boxes. However, temporal delta feature in panel 
(b) mainly revealed the abrupt changes at onsets almost 
without successive changes, which were actually the 
important cues for auditory perception on speech temporal 
patterns [8]. The successive spectral changes could be 
captured in (a) because of the Gain function in SCE 
processing taking the influence of spectral changes in 
preceding frames into consideration. Spectral contrast feature 
in panel (c) especially highlighted the feature contrasts 
between the formant frequencies and other sub-bands, and 
made the feature within the high frequency range more 
concentrated in certain bands, such as the third and the fourth 
formant frequencies, while spectral delta feature in panel (d) 
remained “noise” within high frequency bands and the 
formant frequencies which played an important role in 
spectral processing for auditory system was not sufficiently 
prominent. To depict the SE processing across frequency in 
details, panel (f) showed the spectral contrast feature for a 
certain frame on frequency scale. With GF as reference, SE 
processing mainly increased the feature values within the 
formant frequencies and decreased the feature values within 
their neighboring bands through Gain function, meanwhile it 
smoothed the subtle spectral dynamics to make the contrasts 
more prominent through SF operation. 
 

3. EXPERIMENTS 
 
3.1. Speech separation system 
 
In the classification-based speech separation, the ideal binary 
mask (IBM) is used to guide the neural network training. The 
IBM was calculated by a 64-channel gammatone filterbank 
with 20 ms frame length and 10 ms frame shift. The local 
SNR threshold was set to -10 dB. As for evaluation, our goal 
was to reveal the relative performance of various  
spectrotemporal features, hence the classifier was fixed to a 
deep neural network (DNN) to simplify and speedup training 
[15]. The feature evaluation framework was the same as that 
used  for MRCG evaluation in Chen et al. [12]. Acoustic 
features for each frame were extracted from a mixture and 
were feed into a DNN to estimate each frame of the IBM. 
HIT-FA rate and the short-time objective intelligibility (STOI) 
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were included as the evaluation measurements. 
 
3.2. Experiment setting 
 
The experiment setting was also consistent with that in Chen 
et al. To exclude any mistake from network training, we used 
the DNN toolbox supplied by those authors 
(‘http://web.cse.ohio-state.edu/pnl/software.html’).  

Mixtures were created using the IEEE corpus recorded 
by a male speaker [16] and six types of nonstationary noise  
(see Table 1) from the NOISEX corpus [17]. Each mixture 
was created from one IEEE sentence and one noise type at -5 
dB SNR where the recognition rate of even normal-hearing 
listeners was less than 50% and could be regarded as an 
adverse environment [3]. To create the training set, we used 
480 IEEE sentences and the first half of each noise. As for the 
test set, we used another 50 IEEE sentences and the second 
half of the noises. We set aside 50 mixtures from the training 
set as a cross validation set for early stopping.  
 
3.3. Comparison feature 
 
The most commonly used spectrotemporal context was the 
delta across time and frequency [3], which was used as the 
comparison condition here. The overall comparison feature 
also consisted of three components: 𝑔 𝑛, 𝑘  representing GF 
or MRCG, temporal delta feature ∆𝑇# 𝑛, 𝑘  and spectral 
delta feature ∆𝑆L 𝑛, 𝑘 , denoted as GF_delta or MRCG_delta,  

𝑔 𝑛, 𝑘 , ∆𝑇# 𝑛, 𝑘 , ∆𝑆L 𝑛, 𝑘 ,                   (5) 
where  

∆𝑇# 𝑛, 𝑘 = 𝑔 𝑛, 𝑘 − 𝑔 𝑛 − 1, 𝑘 , 𝑛 = 2, … , 𝑁, 
∆𝑆L 𝑛, 𝑘 = 𝑔 𝑛, 𝑘 − 𝑔 𝑛, 𝑘 − 1 , 𝑘 = 2, … , 𝐾,				 (6) 

where N was the total number of frames. The number of total 
subbands K, was set to 64 in this work. 

3.4. Results 
 
For the 50 test sentences, HIT-FA rate and STOI scores of 
each feature were shown in Table 1 and Table 2, respectively. 
Boldface indicated the best result for each noise type. 

As shown in Table 1, when GF and MRCG were 
combined with spectrotemporal context, HIT-FA rates were 
always higher compared with using GF or MRCG alone. The 
improvement was more significant for GF than for MRCG 
since MRCG itself had already embodied the spectrotemoral 
context to some extent. Generally, the proposed feature 
achieved better average performance compared with the delta 
feature for both GF and MRCG. Except for the engine noise, 
the proposed feature performed the best for all the noise types. 

The performance situation for STOI scores in Table 2 
was similar with that for HIT-FA rates, except that the 
performance of the proposed feature in STOI scores was 
worse than that of the delta feature for the tank noise while 
this situation appeared in HIT-FA rates for the engine noise. 
It was noteworthy that adding the delta feature did not always 
improve speech intelligibility, which was indicated for the 
factory for both GF and MRCG and for the babble noise and 
vehicle noise for MRCG. In addition, for the babble noise, 
GF_proposed feature even outperformed MRCG which 
showed the best performance for all noise types in earlier 
work [12]. 

 
4. DISCUSSION 

 
Table 1 showed adding spectrotemporal context could always 
result in better HIT-FA performance than using basic features 
alone, no matter applying delta method or the proposed 
method. However, results for STOI scores in Table 2 was not 
always the case, where adding delta feature did not produce 

 
Fig. 1. Visualization of each feature component extracted from premixed clean speech. (a) spectral change feature; 
(b) temporal delta feature; (c) spectral contrast feature; (d) spectral delta feature; (e) GF feature; (f) spectral contrast 
feature relative to GF for a certain frame on frequency scale. 
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higher STOI scores for some conditions, while adding the 
proposed feature still always improved the STOI 
performance. The possible reason might be that, HIT-FA is 
more associated with classification accuracy which can be 
theoretically increased when extra useful spectrotemporal 
information is added to input features. While STOI is an 
objective measurement directly correlated with human 
speech intelligibility which is expected to be improved when 
spectrotemporal context exactly includes crucial cues that 
have been proven to be helpful for human speech perception 
in noise. Compared with the delta feature which was derived 
by just simply calculating the difference of features across 
time and frequency, the proposed one considered the 
characteristics of human auditory perception on speech, to 
focus on perceptual-important components, e.g., formant 
transitions and formant frequencies. 

To evaluate the generalization of the proposed feature to 
other SNR conditions, separation performance for additional 
0 dB and 5 dB was shown in Table 3 only for cockpit noise 
where the proposed feature produced the most benefit due to 
the space limitation. However, benefit for the proposed 
feature decreased with the improvement of SNR values. 
Since the basic GF or MRCG could capture enough 

information when SNR was high, less benefit might be 
provided by extra spectrotemporal information from both the 
proposed and delta features, compared with low SNR 
conditions. The results indicated that the more adverse the 
acoustic environment was, the more important 
spectrotemporal context turned to be in speech separation 
task. Meanwhile, the proposed feature showed the most 
benefit at -5 dB which was a relatively adverse noisy 
condition, indicating its promising advantage on robustness 
in resistance to background noise. 
 

5. CONCLUSION 
 
In this study, we explored a feature that integrated 
spectrotemporal context inspired by characteristics of 
auditory perception. The proposed feature was evaluated 
relative to other features which also included the 
spectrotemporal context for classification-based speech 
separation at -5 dB SNR. Experimental results showed that 
the proposed feature outperformed the delta feature for most 
noise types in terms of HIT-FA and STOI and revealed the 
promising advantage on robustness in resistance to 
background noise.  
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Table 1. HIT-FA (%) for six noise types at -5 dB for IEEE sentences. Boldface indicated best result. 

Feature   
Noise Factory Babble Engine Cockpit Vehicle Tank Average 

GF 52.61 46.06 69.88 67.96 70.43 62.5 61.57 
GF_delta 55.30 47.42 72.45 70.89 72.66 65.46 64.03 

GF_proposed 55.36 48.53 72.23 71.76 73.01 66.14 64.59 
MRCG 59.35 49.82 74.96 75.01 75.03 69.38 67.26 

MRCG_delta 60.87 50.77 76.04 75.98 75.49 71.15 68.38 
MRCG_proposed 60.89 51.53 76.03 76.26 75.71 71.86 68.71 

 
Table 2. STOI (%) score for six noise types at -5dB for IEEE sentences. Boldface indicated best result. 

Feature   
Noise Factory Babble Engine Cockpit Vehicle Tank Average 

GF 64.46 65.47 68.96 67.98 77.15 70.84 69.14 
GF_delta 64.00 64.51 68.99 68.66 77.37 71.93 69.24 

GF_proposed 64.89 65.95 69.30 68.95 77.64 71.85 69.76 
MRCG 64.88 65.13 70.26 70.22 78.33 72.65 70.25 

MRCG_delta 64.34 64.72 70.64 70.64 78.11 73.36 70.30 
MRCG_proposed 65.19 65.18 70.78 70.88 78.87 73.26 70.69 

 

Table 3. Separation performance for cockpit noise at 0 dB 
and 5 dB, respectively. 

Feature  HIT-FA STOI 
0 dB 5 dB 0 dB 5 dB 

GF 66.08 76.76 77.69 86.85 
GF_delta 68.99 78.92 77.91 86.79 

GF_proposed 69.37 79.05 77.98 86.94 
MRCG 76.54 84.12 78.84 87.72 

MRCG_delta 76.90 84.37 78.92 87.55 
MRCG_proposed 77.18 84.54 79.60 88.08 
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