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ABSTRACT

We provide a speech coding scheme employing a generative model
based on SampleRNN that, while operating at significantly lower
bitrates, matches or surpasses the perceptual quality of state-of-the-
art classic wide-band codecs. Moreover, it is demonstrated that the
proposed scheme can provide a meaningful rate-distortion trade-off
without retraining. We evaluate the proposed scheme in a series of
listening tests and discuss limitations of the approach.

Index Terms— speech coding, deep neural networks, vocoder,
SampleRNN

1. INTRODUCTION

Generative modeling for audio based on deep neural networks, such
as WaveNet [1] and SampleRNN [2], has provided significant ad-
vances in natural-sounding speech synthesis. The main application
has been in the field of text-to-speech [3, 4, 5] and parametric syn-
thesis [6], where the models replace the vocoding component.

Moreover, generative models can be conditioned by global and
local latent representations [1]. In the context of voice conversion,
this facilitates natural separation of the conditioning into a static
speaker identifier and dynamic linguistic information [7].

In this paper we develop a wide-band conditioning from the
vocoder [8] with parameters quantized to 5.6, 6.4 and 8 kb/s and
use these to condition a SampleRNN model. We benchmark our re-
sulting speech coding scheme against AMR-WB [9] at 23.05 kb/s
and SILK [10] at 16 kb/s, which, at this bitrate, is a state-of-the-art
classic speech codec providing good to excellent quality [11].

While it was shown in [12] that the subjective quality of AMR-
WB at 23.05 kb/s can be approached at only 2.4 kb/s by using
WaveNet synthesis conditioned on narrowband vocoder parameters,
the quality gap to classic speech coding schemes was not closed.
Furthermore, the reconstructed waveforms occasionally suffered
from typical blind bandwidth extension artifacts (the WaveNet-based
decoder used narrow-band conditioning but synthesized wide-band
speech).

The purpose of this paper is two-fold. First, we demonstrate that
the approach of [12] is reproducible with another generative network
architecture. Second, we investigate the scalability of such a scheme
in terms of rate-quality trade-off. In particular, we demonstrate that
higher reconstruction quality can be achieved by allowing a higher
bitrate for the conditioning. The subjective quality is evaluated with
a methodology based on MUSHRA[13].

The speech coder structure considered in this paper is shown
in Fig. 1 at a high level. It includes an encoder based on a vocod-
ing structure governed by a parametric signal model that facilitates
quantization constrained by bitrate. The decoder scheme uses a four-
tier SampleRNN architecture. The conditioning parameters are de-
signed in a way that lower quality conditioning can be embedded

into higher quality conditioning, which allows for fixed dimension-
ality of the conditioning irrespectively of the operating bitrate. The
signal sample modeling and synthesis are based on a discretized lo-
gistic mixture [14] instead of the 8-bit µ-law domain used in [1, 12].

Perhaps one of the most interesting questions related to the
proposed scheme is whether its performance generalizes to unseen
speech signals. While it is relatively straightforward to avoid model
overfitting within the selected dataset by using a state-of-the-art
training approach (e.g., [15, 16]) the issue of robustness of the cod-
ing algorithm remains unclear. In order to facilitate comparison to
[12] we carried our experiments with the same multi-speaker dataset,
namely the Wall Street Journal set WSJ0 [17]. However, it com-
prises only American English, and seems to have been created with
capture devices of limited quality. Hence, we cross-validated the
performance of the proposed approach on another publicly available
dataset (clean speech from the VCTK corpus [18]). We demonstrate
how the performance of the coding scheme degrades on signals
from the new data set and then improves again with retraining on an
extended dataset.

This paper is structured as follows. First, the vocoder and its
quantization scheme are described in Section 2 along with the em-
bedding approach. Next, we describe our SampleRNN model and
provide the details of its vocoder conditioning in Section 3. The ex-
perimental setup and the listening test results are presented in Sec-
tion 4. Finally, conclusions are presented in Section 5.

2. VOCODER WITH QUANTIZED PARAMETERS

The encoder scheme is based on a wide-band version of a linear pre-
diction coding (LPC) vocoder [8]. Signal analysis is performed on
a per-frame basis, and it results in the following parameters: i) an
M -th order LPC filter, ii) an LPC residual RMS level s, iii) pitch
f0, and, iv) a k-band voicing vector v. A voicing component v(i),
i = 1, . . . , k gives the fraction of periodic energy within a band.
All these parameters are used for conditioning of SampleRNN, as
described in Section 3. We note the signal model used by the en-
coder aims at describing only clean speech (without background or
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Fig. 1. Block diagrams of the vocoder-based encoder and the Sam-
pleRNN decoder.
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Table 1. Operating points of the encoder (k = 6)
rnominal M spectral n bits n bits
[kb/s] dist. [dB] s vw

8.0 22 0.754 1 + 9 9
6.4 16 0.782 1 + 8 9
5.6 16 1.33 1 + 8 9

simultaneously active talkers).
The analysis scheme operates on 10 ms frames of a signal sam-

pled at 16 kHz. In the proposed encoder design, the order of the
LPC model, M , depends on the operating bitrate. Standard combi-
nations of source coding techniques are utilized to achieve encoding
efficiency with appropriate perceptual consideration, including vec-
tor quantization (VQ), predictive coding and entropy coding [19]. In
this paper, for all experiments, we define the operating points of the
encoder as in Table 1. We used standard tuning practices. For exam-
ple, the spectral distortion for the reconstructed LPC coefficients is
kept close to 1 dB [20].

The LPC model is coded in the line spectral pairs (LSP) domain
utilizing prediction and entropy coding. For each LPC order, M ,
a Gaussian mixture model (GMM) was trained on the WSJ0 train
set, providing probabilities for the quantization cells. Each GMM
component has a Z-lattice according to the principle of union of Z-
lattices [21, 22]. The final choice of quantization cell is according to
a rate-distortion weighted criterion.

The residual level s is quantized in the dB domain using a hybrid
approach similar to that in [23]. Small level inter-frame variations
are detected, signalled by one bit, and coded by a predictive scheme
using fine uniform quantization. In other cases the coding is memo-
ryless with a larger, yet uniform, step-size covering a wide range of
levels.

Similar to level, pitch is quantized using a hybrid approach of
predictive and memoryless coding. Uniform quantization is em-
ployed but executed in a warped pitch domain. Pitch is warped by
fw = cf0/(c + f0) where c = 500 Hz and fw is quantized and
coded using 10 bit/frame.

Voicing is coded by memoryless VQ in a warped domain. Each
voicing component is warped by vw(i) = log( 1−v(i)

1+v(i)
). A 9 bit VQ

was trained in the warped domain on the WSJ0 train set.
A feature vector hf for conditioning SampleRNN is constructed

as follows. The quantized LPC coefficients are converted to reflec-
tion coefficients. The vector of refection coefficients is concatenated
with the other quantized parameters, i.e. f0, s, and v. In the remain-
der of the paper we use either of two constructions of the condition-
ing vector. The first construction is the straightforward concatena-
tion described above. For example, forM = 16, the total dimension
of the vector hf is 24; for M = 22 it is 30. The second construction
is an embedding of lower-rate conditioning into a higher-rate format.
For example, for M = 16, an 22-dimensional vector of the reflec-
tion coefficients is constructed by padding the 16 coefficients with
6 zeros. The remaining parameters are replaced with their coarsely
quantized (low bitrate) versions, which is possible since their loca-
tions within hf are now fixed.

3. CONDITIONAL SAMPLE RNN

SampleRNN is a deep neural generative model proposed in [2] for
generating raw audio signals. It consists of a series of multi-rate
recurrent layers, which are capable of modeling the dynamics of a
sequence at different time scales. SampleRNN models the proba-
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Fig. 2. Conditioning of the SampleRNN.

bility of a sequence of audio samples via factorization of the joint
distribution into the product of the individual audio sample distri-
butions conditioned on all previous samples. The joint probability
distribution of a sequence of waveform samples X = {x1, . . . , xT }
can be written as

p(X) =

T∏
i=1

p(xi|x1, . . . , xi−1). (1)

At inference time, the model predicts one sample at a time by ran-
domly sampling from p(xi|x1, . . . , xi−1). Recursive conditioning
is then performed using the previously reconstructed samples.

3.1. Conditioning

Without conditioning information, SampleRNN is only capable of
“babbling”. Hence, we provide decoded vocoder parameters, hf , as
conditioning information to the model. Eq. 1 thus becomes

p(X|H) =

T∏
i=1

p(xi|x1, . . . , xi−1,hf ), (2)

where hf represents the vocoder parameters corresponding to the
audio sample at time i.

The structure of a conditional SampleRNN is illustrated in
Fig. 2. In a K-tier conditional SampleRNN, the k-th tier (1 < k ≤
K) operates on non-overlapping frames of length FS(k) samples at
a time, and the lowest tier (k = 1) predicts one sample at a time.
Waveform samples xi−FS(k) , . . . , xi−1 and decoded vocoder condi-
tioning vector hf processed by respective 1 × 1 convolution layers
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Fig. 3. Results of the listening test comparing sRNN and vocoder (operating at 8 kb/s (a) and 6.4 kb/s (b)) and the reference speech codecs:
AMR-WB (23.05 kb/s) and SILK (16 kb/s); there were 10 listeners in the test (a), and 11 in the test (b); we use original names of the excerpts.

are the inputs to k-th tier. When k < K, the output from (k + 1)-th
tier is additional input. Similar to [7], all inputs to k-th tier are
linearly summed up. The k-th RNN tier (1 < k ≤ K) consists of
one gated recurrent unit (GRU) layer, cf. [24], and one learned up-
sampling layer performing temporal resolution alignment between
tiers. The lowest (k = 1) tier consists of a multilayer perceptron
(MLP) with 2 hidden fully connected layers.

3.2. Discretized logistic mixture

Instead of using 256-way softmax in the 8-bit µ-law domain as in
[5, 12], we adopt the discretized mixture of logistic distributions
technique introduced in [14, 25] to generate 16-bit samples. The
output layer of the sample-level MLP predicts parameters of each
mixture component, including mixture weight, mean, and log scale.
Unlike the original SampleRNN, which performs an embedding of
quantized sample values into real-valued vectors, we use the raw
samples directly as the input to the MLP tier.

3.3. Model configurations and training setup

As shown in Fig. 2, our architecture has a four-tier configuration
(K = 4), where the frame size for the k-th tier is FS(k). We use
the following frame sizes: FS(1) = FS(2) = 2, FS(3) = 16 and
FS(4) = 160. The top tier shares the same temporal resolution as the
vocoder parameter conditioning sequence. The learned upsampling
layer is implemented through a transposed convolution layer, and the
upsampling ratio is 2, 8, and 10 respectively in the second, third and
fourth tier. The recurrent layers and fully connected layers contain
1024 hidden units each.

During training, we use a batch size of 24 and a sequence
length of 6400 samples for truncated back propagation through time
(TBPTT, [26, 27]) on a single GPU. We use the ADAM optimizer
[28] (β1 = 0.9, β2 = 0.999, and ε = 1e-8) with an initial learning
rate of 0.0002. The learning rate is reduced by multiplying by a
factor 0.3 when validation loss has stopped dropping. Gradients are
hard-clipped to a range of [−1, 1].

4. EXPERIMENTAL EVALUATION

4.1. Perceptual evaluation on the WSJ0 set

We performed perceptual evaluation of the our SampleRNN-based
decoder on randomly selected excerpts from the test set of WSJ0 in
a listening test resembling the experiment in [12]. There were 5 male

speakers and 5 female speakers. The items in the original WSJ0 data
set have inconsistent loudness, which is problematic for a listening
test. Thus, we performed loudness alignment of the test items prior
to encoding.

We used a headphone based MUSHRA-like test methodology
[13]. Since the speech data set was only available at 16 kHz sam-
pling frequency, we only included the 3.5 kHz low-pass anchor
(LP 3.5 kHz), a wide-band original and hidden reference, and no
7 kHz anchor. The conditions used in the test included SILK (at
16 kb/s, variable rate), which is a state-of-the-art speech codec,
and AMR-WB (at 23.05 kb/s, constant bitrate) in a configuration
that facilitates comparison of our results to the 2.4 kb/s decoder of
[12]. In the first two listening tests, we included pairs of condi-
tions: reconstruction provided by the SampleRNN (sRNN) decoder,
and reconstuction provided by the vocoder [8], which was used to
produce the conditioning. Thus both conditions represent decoding
of the same bitstream. In the two following experiments, we used
sRNN decoders that were trained specifically for their respective
operating bitrates.

In the first experiment, we performed a test where the vocoder
and the sRNN decoder operated at the average bitrate of 8 kb/s.
There were 10 expert listeners in the test. The test results are shown
in Fig. 3a, plotted along with the 95% confidence intervals (normal
distribution). It can be seen that the sRNN decoder provides perfor-
mance comparable to SILK at half of its bitrate.

In a second experiment, we used an average bitrate of 6.4 kb/s
for the vocoder and sRNN. The results of the test are shown in
Fig. 3b. There were 11 expert listeners taking part in this test. It
can be seen that the 6.4 kb/s sRNN provides performance better than
AMR-WB at 23.05 kb/s, but it remains in a similar quality region.
However, it can also be seen that sRNN at 6.4 kb/s is significantly
worse than SILK. We note that the two tests were carried out in sep-
arate sessions. The listener populations were only partially over-
lapped between the two tests.

In addition, we evaluated the performance of the conditions from
the listening test using the objective quality assessment tool POLQA
[29]. The results are shown in Table 2. Although this tool is not
suitable for evaluation of signals synthesized by non-deterministic
generative models, it is interesting to note a relatively high score for
the vocoded conditions, and relatively low scores for sRNN. These
results deviate significantly from the results of our listening tests.
However, the ordering of the classic codecs, AMR-WB and SILK is
the same as in our listening tests.
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Fig. 4. The differential scores in the rate-quality test of the embed-
ded sRNN decoders with respect to the sRNN trained on the 6.4 kb/s
conditioning (95% confidence intervals, Student-t distribution.)

4.2. Quality-bitrate trade-off

In a third experiment, we evaluated the perceptual quality-bitrate
trade-off achieved with the sRNN decoder. The conditions in this
test included sRNN decoders evaluated in Section 4.1. In addition,
we took an 8 kb/s decoder and used it to decode bitstreams gener-
ated at lower rates (5.6 kb/s and 6.4 kb/s) – without retraining. We
used properties of the conditioning that allowed to embed a lower
rate conditioning into a higher rate conditioning and provide this to
a decoder trained on higher-rate conditioning (see Section 2).

The results of the experiment are shown in Fig. 4. There were
10 expert listeners in the test. It can be seen that, for the provided
data points, sRNN 8 decoder provides a graceful quality degradation
with decreasing bit rate (sRNN 6.4 (emb), sRNN 5.6 (emb)). Fur-
thermore, the performance of the decoder using the embedded condi-
tioning (sRNN 6.4 (emb)) is similar to the performance of a decoder
trained for the specific bitrate (sRNN 6.4). While we cannot con-
clude that the result generalizes to a wide range of bitrates, we can
see that the proposed sRNN decoder learned to generalize the con-
ditioning, which can be used to provide meaningful rate-distortion
trade-offs. We note that in the course of the training the 8 kb/s de-
coder was never exposed to lower quality conditioning.

4.3. Perceptual evaluation outside the WSJ0 set

We found no evidence of model overfitting in our experiments within
the WSJ0 dataset and all evaluation was done on recordings not in-
cluded in training. However, while evaluating the coding scheme
on speech signals outside WSJ0 we found a performance drop in
order of 10-15 MUSHRA points on average. In order to evaluate
this effect in a controlled experiment, we used signals from another
publicly available speech database.

We constructed a new dataset based on roughly equal contribu-
tions from the WSJ0 set and VCTK set (clean speech from [18]), and
also TSP set [30](1% of the full data set). The final set composition
resulted in doubling the total number of speakers. The total record-
ing time of the combined set was still similar to WSJ0 in the previous

Table 2. Average POLQA scores for conditions and items from the
listening tests (wide-band setting)

Vocoder AMR-WB SILK sRNN
Rate [kb/s] 6.4 8.0 23.05 16.0 6.4 8.0
MOS-LQO 3.43 3.67 4.39 4.41 3.27 3.48
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Fig. 5. The results of listening test including sRNN decoders operat-
ing at 8 kb/s trained exclusively on WSJ0 and combination of WSJ0
and VCTK; there were 9 expert listeners.

experiments. The training set comprised 45 hours of speech and we
used 10 hours of speech for the validation set and 10 hours for the
test set. There was no speaker overlap between the three sets and the
material was approximately equally balanced between female and
male speakers. We retrained the sRNN decoder on this new dataset.

For our final experiment, we randomly selected items from
WSJ0 and VCTK test sets (4 female speakers, 4 male speakers),
and used two versions of identically configured sRNN decoders
(8 kb/s). One was trained solely on WSJ0, the other one was trained
on the combination of the datasets as described above. We also
used the two classic speech codecs as the quality anchors configured
identically as in the previous experiment. The listening test was
conducted with 9 expert listeners and its mean results are shown in
Fig. 5 together with 95% confidence intervals (normal distribution).

It can be seen in the results that the sRNN trained on WSJ0
has significantly worse performance on the items coming from the
VCTK set. But the performance of the retrained sRNN is similar
to the performance reported in Section 4.1. We note that the per-
formance on the WSJ0 items has been maintained while the perfor-
mance on the signals from the updated data set has improved sig-
nificantly. The main difference between the WSJ0 items and the
VCTK items is that the latter comprise dry speech captured in a
semi-anechoic chamber.

We have also informally evaluated the scheme on material in
Mandarin, French, Swedish, and German and we did not find a per-
formance drop due to operation on speech in these languages. Note
that all the training material was in English.

5. CONCLUSIONS

We demonstrated that it is possible to achieve high quality speech
coding that is on par with the state-of-the-art speech codecs, but at
much lower bitrates. It is possible in a coding scheme, where quan-
tized vocoder parameters are used to condition the SampleRNN. Fur-
thermore, we demonstrated that this architecture has a potential to
provide a rate-quality trade-off, which we established by conducting
a series of formal listening tests.

We found the performance of such schemes is highly dependent
on the composition of the datasets and that the robustness issues can
be addressed by using more diverse training material.
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