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ABSTRACT

Adaptive prediction is important in the compression of non-
stationary signals, and a common remedy is to switch be-
tween appropriately designed prediction modes. This paper
presents a near optimal procedure to design prediction modes
for an adaptive compression system. The main challenges
include: instability and mismatched statistics during closed
loop design; and the severe non-convexity of the cost func-
tion trapping the system in poor local minima. The statis-
tical mismatch is circumvented through a largely open loop
(hence stable) design that is devised to asymptotically opti-
mize the prediction modes for closed loop operation. The
non-convexity of the cost function is handled by the determin-
istic annealing paradigm, a powerful non-convex optimiza-
tion framework devised to avoid poor local minima. Experi-
mental results provide substantial gains validating the efficacy
of the proposed design technique.

Index Terms— predictor design, deterministic annealing,
asymptotic closed-loop

1. INTRODUCTION

Linear Prediction is widely used in multimedia compression
systems including speech and video coding [1–3]. Most sig-
nals of interest are non-stationary in nature. This motivates
block or frame based encoding, where the input signal is parti-
tioned into blocks, and optimal prediction filters are designed
for each block. However, sending the actual prediction fil-
ters as side information to the decoder results in a severe rate
penalty. Thus, a standard practice is to define a fixed selection
of prediction filters (modes) at the encoder and only send an
index informing the decoder of the selected mode. This is ef-
fectively “quantization” of the filter space to produce a small
codebook of representative filters. This scenario is common,
for example, in video coding and its spatial and temporal pre-
diction. There is, therefore, strong motivation for an efficient
procedure for offline design of prediction modes.

Mode switching at the encoder is a non-linear operation,
which makes for a challenging non-convex optimization prob-
lem, as the derivative of the cost function with respect to

mode decisions vanishes almost everywhere. Thus, the pre-
dictor design is done in an iterative manner, similar to the
“K-means” clustering algorithm [4], a flavor of which can be
seen in an earlier work from our lab in [5]. In an iteration,
the input blocks are assigned to prediction modes that mini-
mize the prediction residual. The codebook is then refined by
designing optimal prediction filters for each cluster of input
blocks. Since the predictors are applied to reconstructed sam-
ples at the decoder, the design of prediction modes depends
on the reconstructed samples, which themselves depend on
the prediction, thus giving a first glimpse of the closed loop
conundrum we discuss below. In principle, upon design of
prediction modes, the reconstructed samples must be updated
and the process must be repeated until (and if) it converges.
Clearly, the prediction loop creates complex relation between
the prediction filters and the reconstructed samples and makes
the design more challenging. In the context of joint design
of predictors and quantizers, two early approaches have been
proposed in [6] and [7]. In open loop design, the actual in-
put signal is used for predictor design. However, since the
decoder does not have access to original input samples, dur-
ing operation the predictor must operate on the reconstructed
samples and is hence mismatched to its input statistics. In
closed loop design, the predictor is designed for the recon-
structed samples of the previous iteration, but it is then ap-
plied to the different reconstructed samples resulting from the
new predictor, leading to mismatch that can catastrophically
grow due to the prediction loop, which represents a major sta-
bility problem. To address this, asymptotic closed loop (ACL)
design was proposed in [8]. ACL operates in open loop fash-
ion by predicting from reconstructed samples in previous iter-
ation, exactly the statistics based on which the predictor was
updated. However, on convergence, the reconstructed sam-
ples remain unchanged across iterations, effectively optimiz-
ing the system for closed loop operation. Although ACL re-
solves the design stability issues, it still suffers from the non-
convexity of the cost surface and often converges to poor local
minima.

This paper presents a deterministic annealing (DA) ap-
proach to the design of prediction modes. Inspired by princi-
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ples of statistical physics and information theory, DA was pro-
posed as a powerful non-convex optimization framework [9].
The probabilistic nature of DA yields an effective cost func-
tion via expectation, which is differentiable with respect to
the prediction modes. Its annealing schedule gradually re-
duces the randomness of the solution so as to avoid poor local
minima. The overall proposed method embeds ACL within
the DA framework. The careful annealing schedule of DA
is complemented by the stable design platform of ACL, ef-
fectively addressing the central design challenges enumerated
above. Experimental results provide evidence for substantial
performance gains.

2. BACKGROUND

2.1. Prediction model

Fig. 1 shows a predictive compression system. Let xn, 0 ≤
n ≤ N be the input samples. The signal is modelled as first-
order auto-regressive process. Current sample xn is predicted
from the previous reconstructed sample as,

x̃n = αx̂n−1 (1)

The resulting prediction error, i.e, xn − x̃n is quantized and
sent to the decoder. The sum of squared prediction errors that
needs to be minimized is given by,

E =

N∑
n=1

(xn − αx̂n−1)2 (2)

The optimal predictor is given by,

α =

∑
n xnx̂n−1∑
n x̂

2
n−1

(3)

In order to adapt the predictor to the variations in the sig-
nal statistics, let the input be partitioned into blocks (frames)
Let Nf be the set of samples belonging to a particular frame
f . Let the encoder be given a choice of K prediction filters
{αk}, k = 1, 2..K. The encoder chooses the best prediction
mode for each block of samples. Let the best prediction mode
for a given block f be α̂f . The problem at hand is to design
the prediction filters {αk} such that the overall mean squared
prediction error is minimized i.e,

E =
∑
f

∑
n∈Nf

(xn − α̂f x̂n−1)
2 (4)

2.2. Iterative K-mode predictor design

Let us assume for the moment that we have a set of recon-
structed samples x̂n at the encoder. Given these reconstruc-
tions, we can design prediction modes in a way similar to
“K-means” clustering. With an initialization of the prediction
modes, the following steps are performed iteratively:

Fig. 1. Predictive compression system

• Mode assignment: For a given block f , assign the best
mode from the set of prediction modes which mini-
mizes the squared prediction error for the block.

• Prediction modes update: Let Nk be the union of sam-
ples from frames that share the same prediction mode.
Similar to (3), the optimal prediction mode αk for this
cluster is given by,

αk =

∑
n∈Nk xnx̂n−1∑

n x̂
2
n−1

(5)

With the new set of prediction modes, the reconstructed sam-
ples at the encoder are updated. These steps are repeated until
convergence. The reconstructions can be updated in different
ways, leading to the following design paradigms.

2.3. Open-loop, closed-loop and asymptotic closed-loop
design

Various techniques have been proposed in the context of joint
design of predictors and quantizers. Since in most of modern
codecs the quantizer is fixed (up to scaling), our focus here
is on predictor design given fixed quantizers. In open loop
predictor design (see e.g., [6]), the predictor is designed us-
ing original samples. However, since the predictor must be
applied to reconstructed samples, to avoid decoder drift, it is
in fact operating on statistics mismatched with the design. In
closed loop design [7], predictors are designed iteratively. Let
α̂i−1
f be the predictor for frame f in iteration i − 1. The re-

constructed samples for the corresponding frame in iteration
i is updated as,

x̂in = α̂i−1
f x̂in−1 + êin (6)

where êin is the quantized prediction error en = xn −
α̂i−1
f x̂in−1. Predictor α̂i−1

f was designed for reconstruction
in iteration i−1: {x̂i−1n }. However, it is applied to the recon-
structed samples of iteration i: {x̂in}. This mismatch results
in design instability, which grows with feedback through the
prediction loop and often proves catastrophic at low rates.
To tackle this issue, ACL was proposed in [8]. ACL enjoys
the best of both worlds. At each iteration, the samples are
predicted and reconstructed in open loop fashion as,

x̂in = α̂i−1
f x̂i−1n−1 + êin (7)
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Fig. 2. Asymptotic closed loop design

where êin is the quantized prediction error en = xn −
α̂i−1
f x̂i−1n−1. The predictor α̂i−1

f is used with reconstructed
samples x̂i−1n , the same set of samples that it was designed
for, thereby providing a stable design platform. The new set
of reconstructed samples are then used to design prediction
modes αi

k. Upon convergence, the reconstructed samples
remain the same over iterations. Thus predicting from x̂i−1n is
same as predicting from x̂in, which is essentially closed loop
operation. Fig. 2 illustrates ACL design.

3. PROPOSED METHOD

The hard prediction mode assignment in (4) makes it diffi-
cult to optimize the system with respect to prediction modes,
since the derivative vanishes almost everywhere. Hence an
iterative K-mode design was originally proposed. However,
this only ensures convergence to a local minimum and ren-
ders the system highly sensitive to initialization. A related
problem is encountered in quantizer design, where the piece-
wise linear nature of the quantizer makes it a challenging op-
timization problem. In this paper, we propose to embed the
ACL based minimization of the overall prediction error within
the DA framework, in order to jointly overcome all the above
fundamental design challenges. The proposed approach is in-
spired by, and builds on the DA framework of [9]. DA is
motivated by the intuition gained from annealing processes in
physical chemistry, where certain systems are driven to their
low energy states by gradual cooling of the system. Analo-
gously, we introduce controlled randomness in the prediction
mode assignment for the blocks, but deterministically mini-
mize the overall prediction error, thereby avoiding many poor
local minima. The amount of randomness is measured by the
Shannon entropy and is essentially controlled by the “temper-
ature” of the system. The prediction mode assignment is no
longer non-linear, and is differentiable everywhere paving the
way to effective optimization of prediction modes.

We consider a random setting wherein in each frame, a
prediction mode is chosen in probability. The mean squared
prediction error to minimize in ACL iteration i is written as

Obtain Input Sequence

Initialize Encoder Reconstructions

'Heat' Predictor, T=T0, i=0

Optimize conditional probabilities

Optimize Prediction Modes

Re-optimize Conditional
Probabilities

ACL Update of Encoder Reconstructions

Reached Convergence?

No

Cooling Complete?
No

Yes

Exit with final Prediction Modes

i=i+1

T=bT;
 i=0

Convergence of Conditional
Probabilities?

No

Yes

Yes

Fig. 3. Flow chart of the proposed algorithm

the expectation,

J =
∑
f

∑
k

∑
n∈Nf

PfP
i
k|f (xn − α

i
kx̂

i
n−1)

2 (8)

where Pf is the probability of the input data frame and is
assumed to be uniform. Association probability P i

k|f is the
probability that prediction modeαk is selected for input frame
f . The degree of randomness in the system is measured by the
Shannon entropy as,

H = −
∑
f

∑
k

P i
fk log(P

i
fk), (9)

where P i
fk = PfP

i
k|f is the joint distribution of prediction

modes and training data blocks. The problem is viewed as the
minimization of the Lagrangian cost function, directly analo-
gous to the Helmholtz free energy of statistical physics:

F = J − TH (10)
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The degree of randomness is controlled by Lagrangian pa-
rameter T , which is the temperature in the physical analogy.
As we lower T , we trade entropy for prediction error. At the
limit of zero randomness, we in fact directly minimize the
overall prediction error. Minimizing the Lagrangian cost with
respect to the association probabilities P i

k|f , while addition-
ally imposing the constraint

∑
k P

i
k|f = 1, yields the Gibbs

distribution:

P i
k|f =

e
−

∑
n∈Nf

(xn−αikx̂
i
n−1)2

T∑
j e
−

∑
n∈Nf

(xn−αij x̂
i
n−1

)2

T

(11)

Note that at high temperatures, we in fact maximize the sys-
tem entropy and indeed the association probabilities are uni-
form.

The optimal prediction modes now satisfy,

∂J

∂αi
k

=
∑
f

∑
n∈Nf

2PfP
i
k|f (xn − α

i
kx̂

i
n−1)(−x̂in−1)

= 0 (12)

Thus, the optimal prediction modes are given by,

αi
k =

∑
f

∑
n∈Nf P

i
k|fxnx̂

i
n−1∑

f

∑
n∈Nf P

i
k|f (x̂

i
n−1)

2
(13)

At high temperatures, given the uniform association proba-
bilities, it follows from (13) that all the prediction modes are
coincident and are all equal to the optimal single prediction
mode of (3), regardless of initialization. As the temperature is
lowered, the association probabilities become more “discrim-
inating” and the solution more deterministic, with the emer-
gence of different prediction modes through a mechanism of
“phase transitions” in the physical analogy.

The reconstructed samples x̂i+1
n in a block f are now up-

dated in ACL fashion as,

x̂i+1
n =

∑
k

P i
k|f (α

i
kx̂

i
n−1 + êin,k) (14)

where, êin,k is the quantized prediction error. The overall de-
sign procedure is summarized in Fig. 3.

4. SIMULATION RESULTS

The proposed method is applicable to any predictive compres-
sion system. For a proof of concept in a simple setting we fo-
cus on scalar first-order prediction and chose speech signals
as source data. A set of six speech files from the EBU SQAM
database were chosen for simulations [10]. Half of the speech
files were used as training set for designing prediction modes
and the remaining half as the test set. A set of six prediction
modes were designed. A fixed dead-zone quantizer was em-
ployed for quantization. Different R-D points were obtained
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Fig. 4. Reconstructed SNR vs average bits per sample for (a)
training set (b) test set

by varying Lagrange multiplier of entropy constrained quan-
tization. The 3 competitors were: closed-loop (CL), “plain
ACL”, and the proposed method (DA-ACL). While DA-ACL
is independent of initialization, CL and ACL designs were re-
peated with different initialization and the best results were
selected. Fig. 4 shows the reconstructed SNR versus bit
rate. It is evident from the results that the proposed DA-ACL
method gives significant 0.4dB and 5dB gains over competi-
tors ACL and CL, respectively.

5. CONCLUSIONS

This paper presents a novel approach to optimal design of
prediction modes for adaptive compression systems. It elimi-
nates the major shortcomings of existing approaches: statisti-
cal mismatch, design instability, and poor local minima. Sig-
nificant gains over both training and test sets across a range
of bit rates substantiates the utility of the proposed approach.
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