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ABSTRACT

This paper proposes a WaveNet-based delay-free adaptive
differential pulse code modulation (ADPCM) speech coding
system. The WaveNet generative model, which is a state-
of-the-art model for neural-network-based speech waveform
synthesis, is used as the adaptive predictor in ADPCM. To
further improve speech quality, mel-cepstrum-based noise
shaping and postfiltering were integrated with the proposed
ADPCM system. Both objective and subjective evaluation
results indicate that the proposed ADPCM system outper-
formed not only the conventional ADPCM system based on
ITU-T Recommendation G.726 but also the ADPCM system
based on adaptive mel-cepstral analysis.

Index Terms— Speech coding, ADPCM, WaveNet, mel-
cepstrum, noise shaping

1. INTRODUCTION

Adaptive differential pulse code modulation (ADPCM) [1] is
a lossy waveform coding technique widely used in telecom-
munications. The idea behind ADPCM is based on the fact
that a speech sample can be roughly predicted from its past
samples. Instead of quantizing and transmitting a speech sam-
ple directly, ADPCM quantizes and transmits the difference
between the actual speech sample and a predicted one. Since
the quantization step size dynamically changes according to
the behavior of the speech samples, ADPCM can effectively
transmit waveforms with reasonable speech quality.

The most widely used standardized ADPCM system was
provided in ITU-T Recommendation G.726 [2]. It includes
a backward adaptive quantizer and adaptive predictor with
two structures: a sixth-order section that models zeros and
second-order section that models poles of a transfer func-
tion from input speech samples. Tokuda et al. [3] proposed a
short-term adaptive predictor based on adaptive mel-cepstral
analysis [4]. There have been other attempts to improve the
adaptive predictor in ADPCM using a simple structure [5, 6].
However, neural-network-based nonlinear models should re-
construct speech samples more precisely than such linear pre-
dictive coders. In the 1990s, ADPCM systems using a neural-
network-based nonlinear predictor were proposed [7, 8, 9,
10]. Although their effectiveness was shown through exper-

iments, the neural network structures were very simple, e.g.,
only one hidden layer with tens of neurons. Recent neural-
network-based waveform models, such as WaveNet [11] and
SampleRNN [12], are thus expected to more accurately pre-
dict speech samples. Since the WaveNet generative model
can effectively handle long time-range signals due to dilated
causal convolutions [11], it should work as not only a short-
term but also long-term predictor of speech samples.

As the effectiveness of WaveNet has been proven in vari-
ous domains, e.g., text-to-speech synthesis [11, 13], paramet-
ric speech coding [14] and lossless speech coding [14, 15],
we propose a WaveNet-based ADPCM speech coding sys-
tem in which WaveNet is used as the adaptive predictor.
Since the WaveNet model in the proposed system is uncon-
ditional, there is neither computational cost nor algorithmic
delay incurred by calculating side information such as line
spectral pairs, i.e., delay is at most one sample if computa-
tional speed is fast enough. Inspired from previous work [3],
mel-cepstrum-based noise shaping and postfiltering were in-
tegrated with the proposed system to improve the quality
of reconstructed speech. The spectrum represented by mel-
cepstral coefficients has a frequency resolution similar to
that of the human ear. Since the transfer functions of noise
shaping and postfiltering are defined through the mel-cepstral
coefficients, the effects of noise shaping and postfiltering
should be suitable to human auditory perception.

The remainder of the paper is organized as follows: Sec-
tion 2 briefly explains the basic structure of ADPCM. The
proposed WaveNet-based ADPCM speech coding system
with mel-cepstrum-based noise shaping and postfiltering is
presented in Section 3. Section 4 describes the objective
and subjective evaluations, and discusses the results. Finally,
conclusion and future work are mentioned in Section 5.

2. BASIC ADPCM STRUCTURE

Figure 1 shows the basic structure of an ADPCM coder.
Given an input sample x[n], the difference in that and a
predicted one is calculated. The difference signal e[n] is
quantized using an adaptive quantizer. Then, the quantized
difference signal, i[n], is transmitted to a decoder through
a digital channel. The decoder generates a reconstructed
sample x̂[n] from the received i[n]. In the figure, the gain
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Fig. 1. Basic structure of ADPCM coder.

factor of a filter G(z) is assumed to be unity, i.e., the impulse
response at time n = 0 is unity. Thus, G(z) − 1 has no
delay-free paths.

3. WAVENET-BASED ADPCM SPEECH CODING

3.1. WaveNet generative model

WaveNet [11] is an autoregressive generative model that pre-
dicts the current sample of a discrete-valued time series x =
[x[0]x[1] · · · x[N − 1] ] using past samples:

p (x) =

N−1∏
n=0

p (x[n] |x[0], x[1], . . . , x[n− 1]) , (1)

where N is the length of the time series. The conditional
probability distribution in (1) is represented using dilated
causal convolutions with a very large receptive field. The
output of the WaveNet model is a categorical distribution.

3.2. WaveNet-based adaptive predictor

The adaptive filter G(z) based on the WaveNet model should
accurately predict speech samples, resulting in improved
quality of decoded speech. The relationship between a past
sample x[n − 1] and the predicted next sample x′[n] can be
represented using the WaveNet model P (z) (see Fig. 2(a)).
The relationship can be converted as the relationship between
x[n] and x′[n] using a delay operator z−1 (Fig. 2(b)). The
relationship and inverse relationship between the difference
e[n] = x′[n]−x[n] and x[n] are shown in Figs. 2(c) and 2(d),
respectively. It can be seen from these figures that

G(z) =
X(z)

E(z)
=

1

1− z−1P (z)
. (2)

Thus,

G(z)− 1 =
z−1P (z)

1− z−1P (z)
. (3)

From (2) and (3), the block diagram of the proposed WaveNet-
based ADPCM speech coding system is derived as that shown
in Fig. 3.

Fig. 2. Relationship between two signals.

Since the WaveNet model outputs a distribution rather
than a scalar value, the output must be converted to a scalar
value x′[n] to calculate the difference signal e[n]. In this pa-
per, a weighted trimmed mean is used for the conversion using
only reliable values in the distribution:

x′[n] =
1

B

∑
j∈J

(n)
B

p
(n)
j · xj , (4)

where J (n)
B is a set of indices that have B highest probabilities

in the predicted distribution p(n), p(n)j is a probability corre-
sponding to the j-th bin of p(n), and xj is a sample value cor-
responding to the j-th bin of the distribution. If B = 1, only
a sample value corresponding to the mode of the predicted
distribution is used as a predicted sample.
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Fig. 3. Block diagram of proposed WaveNet-based ADPCM system.

Fig. 4. Block diagram of proposed WaveNet-based ADPCM system with noise shaping and postfiltering.

3.3. Mel-cepstrum-based noise shaping and postfiltering

Figure 4 shows a block diagram of the proposed WaveNet-
based ADPCM system with mel-cepstrum-based noise shap-
ing and postfiltering. In the figure, D(z) is a minimum
phase transfer function derived from the following spectral
envelope model using M -th order mel-cepstral coefficients
{c̃(m)}Mm=0, which are calculated from input speech samples
by using adaptive mel-cepstral analysis [4]:

H(z) = exp

M∑
m=0

c̃(m) z̃−m

= K ·D(z), (5)

where z̃−1 = (z−1 − α)/ (1 − αz−1) and K is the gain
factor. The phase characteristic of the all-pass function z̃−1

can approximate the mel-frequency scale by tuning α. By
following one of the methods proposed in [16], we can derive

K = exp b(0), (6)

D(z) = exp

M∑
m=1

b(m)Φm(z), (7)

where

b(m) =

{
c̃(M), (m = M)

c̃(m)− αb(m+ 1), (m < M)
(8)

Φm(z) =


(1− α2)z−1

1− αz−1
z̃−(m−1), (m > 0)

1. (m = 0)
(9)

The postfiltering filter D(z) is represented as

D(z) = exp

M∑
m=1

b(m)Φm(z), (10)

where

b(m) =

{
b(m), (m > 1)

−αb(2). (m = 1)
(11)

The tunable parameters γ and β control the effects of noise
shaping and postfiltering, respectively. These filters can be
implemented using a structure of mel-log spectrum approxi-
matation (MLSA) filter [16].
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4. EXPRIMENTS

4.1. Experimental setup

We used the Carnegie Mellon University (CMU) Arctic
databases [17] to evaluate the proposed system. The speech
signals in the databases were downsampled to 8 kHz and
quantized to eight bits by using the µ-law quantizer [18].
A speaker-dependent WaveNet model was trained using
1092 sentences uttered by a female speaker (slt). Forty
sentences not including training sentences were used for
evaluation. The dilations of the WaveNet model were set
to 1, 2, 4, . . . , 512. Ten dilation layers were stacked twice.
The size of the channel for dilations, residual blocks, and
skip-connections was 32. The parameters were optimized
through the Adam solver [19]. We compared the ADPCM
methods based on G.726, adaptive mel-cepstral analysis, and
WaveNet. The details of the methods are summarized in
Table 1. The backward adaptive quantizer used in G.726
without slow scale factors [2] was used in all the methods.
We set α = 0.31, γ = 0.3, β = 0.3, M = 12, and B = 200.

4.2. Objective experimental results

We used the mean opinion score-listening quality objec-
tive (MOS-LQO) [20, 21] measure calculated from the per-
ceptual evaluation of speech quality [22]. The MOS-LQO
values for all method are shown in Fig. 5. As expected, the
increase in bit rate drastically improved the MOS-LQO. AM-
CEP2 outperformed AMCEP, which achieved a better score
than that of G726-16. This indicates the effectiveness of mel-
cepstrum-based noise shaping and postfiltering. Although
WN-SD did not use them, it was comparable to AMCEP2.
WN-SD2 outperformed G726-24 in terms of MOS-LQO.

4.3. Subjective experimental results

The speech quality of reconstructed signals was subjectively
assesed by eight participants through the MOS test. Each
participant evaluated 10 sentences randomly chosen from the
40 test sentences, i.e., each participant rated 70 sentences
(10 sentences × 7 methods). The subjective experiments

Table 1. Methods to compare performance.

Bit rate Type of Noise shaping
[kbit/s] predictor & postfiltering

G726-16 16 G.726 [2]
G726-24 24 G.726
G726-32 32 G.726
AMCEP 16 MLSA [3]
AMCEP2 16 MLSA ✓
WN-SD 16 WaveNet
WN-SD2 16 WaveNet ✓
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Fig. 5. Boxplot of MOS-LQO values.

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

G726-16
G726-24

G726-32
AMCEP

AMCEP2

WN-SD
WN-SD2

1.49

3.03

4.46

2.05

3.80

3.06

4.63

M
ea

n 
op

in
io

n 
sc

or
e

95% confidence intervals

Fig. 6. Mean opinion scores for speech quality.

were conducted in a soundproof room. Figure 6 shows the
results. The relative relationship among the methods was
roughly similar to that of the objective evaluation. However,
WN-SD2 was comparable to G726-32. This indicates that
the proposed method can improve a transmission efficiency
by two fold compared with the widely used conventional
G.726-based method.

5. CONCLUSION

A speaker-dependent WaveNet-based delay-free ADPCM
speech coding system was presented. Experiments showed
that it outperformed conventional ADPCM coding systems.
Future work includes investigating the speaker dependency
and the robustness against bit errors of the proposed system.
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