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ABSTRACT

The quality of speech communication networks has recently
improved significantly by extending the available audio band-
width from narrowband, firstly to wideband, and then to
super-wideband. This bandwidth extension marks the end of
the typically muffled sound we know from plain old telephone
services. Another reason for increased speech quality is the
fully digitally packet-based transmission. However, so far,
no speech quality prediction model is able to estimate super-
wideband quality without a clean reference signal. In this
paper, we present a non-intrusive speech quality assessment
model NISQA, which – in contrast to current state-of-the-art
models – can predict the quality of super-wideband speech
transmission. Furthermore, it is able to accurately predict the
quality impact of packet loss concealment of modern codecs,
such as Opus and EVS. The model uses a novel approach,
where a CNN firstly estimates the per-frame quality, and
subsequently, an RNN aggregates the per-frame values over
time, to estimate the overall speech quality. Averaged over a
comprehensive test set, the model achieves an RMSE*3rd of
0.29 with subjective MOS.

Index Terms— speech quality, non-intrusive, single-
ended, packet loss, quality of service

1. INTRODUCTION

The perceived speech quality of voice communication ser-
vices has rapidly increased in the last decade. One of the
reasons for the improved quality is the extension of the trans-
mission bandwidth from narrowband (NB), with a bandwidth
from 300 - 3400 Hz, to wideband (WB) with 100 - 7000 Hz.
These days, an increasing amount of telephone calls are car-
ried out in WB, for example in mobile 3G or in fixed-line
Voice over IP (VoIP) networks. Recently, the quality was
further improved with the introduction of super-wideband
(SWB) transmission to speech communication networks,
with a bandwidth of 50 - 14000 Hz. In mobile voice net-
works, SWB is enabled with the state-of-the-art codec EVS
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and Voice over LTE (VoLTE) or Voice over WLAN (VoWi-
Fi) technology. Also, many over-the-top VoIP services (e.g.
Whatsapp, Skype, Line, etc.) support WB/SWB transmission
with codecs such as Opus.

The quality of speech transmission services is tradition-
ally assessed in listening-only test, in which naı̈ve test partic-
ipants judge the quality of speech samples on a 5-point abso-
lute category rating (ACR) scale. The average across all test
participants then gives the mean opinion score (MOS). Since
subjective methods require a significant effort to conduct,
instrumental models have been established. Signal-based
models can be divided into two groups: Intrusive models
require the degraded output signal of the transmission system
and the clean original input signal. The quality is then esti-
mated with the help of distance measurements between both
signals. Non-intrusive or single-ended models rely only on
the degraded output signal of the transmission system. The
long-term standard for NB and WB speech quality assessment
by the International Telecommunication Union (ITU-T) has
been PESQ [1] and WB-PESQ [2]. They are now replaced
by P.OLQA [3], the current recommendation by the ITU-T,
which also considers SWB transmission. P.OLQA proved to
deliver reliable predictions if the reference signal is available.

However, the currently recommended non-intrusive model
by the ITU-T P.563 [4] only considers NB transmission. To
the best of our knowledge, so far, no non-intrusive speech
quality models for WB nor SWB transmission have been
proposed. That being said, many NB models have been pre-
sented in the literature. Apart from P.563, the ANIQUE+
model [5] also showed to provide accurate prediction results.
More recently, in [6], a model based on the outputs of an au-
tomatic speech recognizer was presented, and in [7] a model
based on a BiLSTM network was shown, which is focused
towards speech enhancement. The latter paper also includes
a comprehensive list of other proposed models. The current
state of the art models P.563 and ANIQUE+ are known to
give poor quality estimates in case of concealed packet loss.
However, in modern packet-based communication networks,
where the speech transmission is fully digitally, lost packets
are one of the main quality impairments. In this paper, we
try to overcome these problems by presenting a model that
predicts the quality of transmitted speech in an SWB context.
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2. MODEL DESCRIPTION

The proposed SWB speech quality estimator NISQA1 is
based on a convolutional neural network (CNN) that esti-
mates the speech quality for each frame of the input signal.
The estimated per-frame quality values are then aggregated
over time by using a recurrent neural network (RNN). The
input to our model are signals with a sample rate of 48 kHz,
which are then transformed to log-mel-spectrograms (see
Figure 2). To do this, firstly, we calculate spectrograms with
an FFT window length of 1024 samples. We use a hop size
of 480 samples to obtain a time resolution of 10 ms. Then,
a segment of the spectrogram with length 15 frames (i.e.
150 ms) is extracted, centered around the frame to estimate
the speech quality. After this step, a mel filter bank with a
frequency range from 0 - 16 kHz and 48 bands is applied.
The log energy is then used as input for the CNN. CNNs are
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Fig. 1. Block diagram of the proposed NISQA model.

most commonly used in the field of image classification and
have the ability to learn a suitable set of features – for a given
regression or classification task – automatically. This fea-
ture set learning is done in the so-called convolutional layers
that give the neural network its name. Recently, they have
increasingly been used for recognition or detection tasks in
the context of music and speech [8, 9, 10, 11, 12]. In [13] we
further showed that CNNs can successfully be used to detect
lost packets from speech spectrograms. The design of the
proposed CNN is shown in Table 1. We use three maxpooling
layer to downsample the feature map in time and frequency.
The downsampling procedure helps to fasten computation
time and also avoids overfitting of the model by reducing
the number of parameters in the network. To further reduce
overfitting, dropout layers [14] are applied. To speed up the
training time we use batch normalization [15] and rectified
linear unit (ReLU) layers. The output of the CNN is then the
per-frame quality. It should be noted that it is not possible
to model the overall quality by using simple metrics such as
the average and variance of the estimated per-frame quality.
For example, short interruptions have been proven to sound
more annoying than steady background noise [16]. Also, low
quality, during a silent segment of the original speech signal,

1The proposed model is available to download for other researchers at:
https://github.com/gabrielmittag/NISQA

Table 1. Design of the convolutional neural network.

Layer Size Stride
Conv, 16 ch 3x3
Batch normalization
ReLU
Maxpool 2x2 2x2
Conv, 32 ch 3x3
Batch normalization
Relu

| Maxpool 2x2 2x2
| Dropout 20%
| Conv, 64 ch 3x3
| Batch normalization

2x | ReLU
| Dropout 20%
| Conv, 64 ch 3x3
| Batch normalization
| Regression

Fully connected
Softmax

degrades the overall speech quality less than during active
speech segments, where the impairment may even disturb the
intelligibility of the transmitted speech. For these reasons,
we chose to model the time dependency of the perceived
speech quality with an RNN. Another advantage of RNNs
is that they allow time sequences with different lengths as
input. Long short-term memory (LSTM) networks are a type
of RNN that is able to remember their inputs over a longer
period of time and thus are able to model long-term depen-
dency problems. These kinds of networks are often used to
forecast time-series. A more specific variation is the BiL-
STM layer that learns bidirectional dependencies between
time steps and which we used in our model. The design of
the RNN that is used to estimate the overall speech quality is
depicted in Table 2. Besides the per-frame quality, we also
use mel-frequency ceptral coefficients (MFCCs) as inputs, in
order to provide the RNN with some context of the speech
signal. We use MFCCs over the mel filter bank output be-
cause they compress information about the vocal tract into a
small number of coefficients. By using a more compressed
feature set, we hope to avoid overfitting of the LSTM net-
work. To calculate the MFCCs we apply a discrete cosine
transform (DCT) to the log-mel-spectrogram and extract 13
coefficients. The advantage of the CNN-LSTM approach is
twofold: Firstly, the per-frame quality gives some insight into
the cause of a quality degradation, for example, frame loss
due to transmission errors could be observed by a sudden
decrease of speech quality. Secondly, this approach helps to
regularize the training of the RNN. As on a per frame basis,
we have a large amount of training data, but on a file basis
only limited data, it is important to minimize the input feature
size of the RNN.
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3. DATABASES

Overall, 29 different databases with typical P.800 [17] double
sentences with a duration of 6 - 12 s were available. 20 of the
databases are taken from the P.OLQA pool and were used dur-
ing the ITU-T P.OLQA competition. These databases contain
a large variety of speech distortions, such as different codecs,
noises, live recordings, and transmission errors. All SWB test
set databases from the P.OLQA pool were chosen for our test
set and all SWB training sets were included in our training
set. Additionally, we included the WB databases, for which
SWB reference files were available and calculated an SWB
MOS with P.OLQA for training only; the same was done for
the additional databases WB DTAG1 and WB DTAG2, which
are described in [16]. Three more SWB sets were included:
SWB TUBDIS contains the same anchor conditions as the
databases of the P.OLQA pool and additionally packet loss
conditions of the codecs G.722 and OPUS, SWB TUBLIK
contains different codecs, band-passes, and MNRU noise and
is described in [18], SWB VUPL contains different packet
loss conditions of the EVS codec at the highest bitrate and
uses the German ITU-T P.501 [19] Annex C sentences as
source files.

Many of the databases are using the same reference sig-
nals. However, for non-intrusive models, it is important to
validate that the model gives accurate predictions for a wide
variety of talkers. Also, more recent SWB codecs, such as
Opus and EVS are not included in the P.OLQA pool. Because
of this, we generated four databases with reference files taken
from the TSP database [20] and overall 16 different talkers,
where each of the four databases is generated from 120 sen-
tences by four talkers. Then we processed the reference files
with the codecs G.711, G.722, AMR-NB, AMR-WB, OPUS,
and EVS in different bitrate modes and random and bursty
packet loss from 1-12 %. The packet loss patterns were ap-
plied with the ITU-T STL Toolbox [21], where bursty error
patterns are based on the Bellcore model [22] and random
error patterns on the Gilbert model. The Opus decoder was
modified in order to apply error patterns from the STL Tool-
box. These four databases are not subjectively rated and only
the objective MOS, calculated by P.OLQA is available. An
overview of the language, number of conditions, files, listen-
ers, and talkers of the databases can be seen in Table 3.

Table 2. Design of the recurrent neural network.

Layer Units
BiLSTM 100
Leaky ReLU
Dropout 50%
BiLSTM 125
Fully connected
Regression

4. MODEL TRAINING AND RESULTS

To train the model, we first calculated the per-frame similarity
between the degraded and the original signal with POLQA
v2 in the SQuadAnalyzer v.2.4.2.7 implementation. Then we
aligned the per-frame similarity with the spectrogram seg-
ments, using a nearest neighbor interpolation. The aligned
similarity is then used as the response variable for the CNN
training. We use the ADAM solver, a mini-batch size of 4000
and an initial learning rate of 0.001. After the CNN training,
we use the prediction of the per-frame quality/similarity of
the training set, together with the MFCCs as input for the
RNN training. To this end, we again use the ADAM solver,
a mini-batch size of 200, padding value of 0, and an initial
learning rate of 0.001. We shuffled the mini-batch at ev-
ery epoch. For the evaluation, however, we estimated the
responses individually for every file, without padding. All
in- and outputs are normalized with the z-score method. As
response variable, we applied the subjective per-file MOS for
the SWB databases, and the objective P.OLQA SWB MOS
for the WB databases and the SWB TSP PL databases, for
which no subjective ratings are available. The results are
evaluated according to ITU-T Rec. P.1401 [23] in terms
of the epsilon-insensitive RMSE (RMSE*) after a 3rd order
polynomial monotonic mapping (RMSE*3rd). The RMSE*
is similar to the traditional root mean square error (RMSE)
but considers the confidence interval of the individual MOS
scores (see P.1401 eq. (7.29)). The mapping compensates for
offsets, different biases, and other shifts between scores from
the individual experiments, without changing the rank order.
Additionally, we include the Pearson correlation coefficient r
and the traditional RMSE to the evaluation analysis. To com-
pare our results to other non-intrusive speech quality models
we used the current state-of-the-art models ANIQUE+ and
P.563. Both of these models are only valid for narrowband
signals with a sample rate of 8 kHz. However, since there
are no WB or SWB models available yet, we downsampled
the speech signals in order to have a baseline for compari-
son. We used the objective MOS together with the calculated
features to retrain both models on the training set with a lin-
ear regression. It should be noted that the retrained versions
improve the results of ANIQUE+ and P.563 on all databases.
In addition, we compare the results to the intrusive model
P.OLQA, which can be seen as the topline with the lowest
RMSE*3rd possible. The results are presented in Table 3.
The average is calculated only over databases with subjective
scores. On the training set, the model achieves excellent re-
sults. This was expected since we use neural networks that
tend to overfit to training data. The average RMSE*3rd on the
test data is 0.29, which is approximately 0.1 higher than on
the training data. However, the proposed model NISQA still
outperforms the retrained baseline models ANIQUE+ and
P.563 by an RMSE*3rd of 0.11 on average. The RMSE*3rd
of the NISQA model is on average only 0.1 worse than the
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Table 3. Results of the proposed NISQA model compared to P.OLQA, and retrained Anique+, and P.563.
Files Listeners Source P.OLQA ANIQUE+ RT P563 RT NISQA

Databases Lang Con Per Con Per File Talker r RMSE RMSE*3rd r RMSE RMSE*3rd r RMSE RMSE*3rd r RMSE RMSE*3rd
Training

SWB 101 ERICSSON sv 57 12 10 a 0.83 0.56 0.24 0.52 0.62 0.52 0.66 0.54 0.44 0.92 0.37 0.19
SWB 201 FT DT fr 48 4 24 b 0.93 0.44 0.27 0.68 0.78 0.59 0.76 0.70 0.50 0.92 0.57 0.25
SWB 202 FT DT fr 49 4 24 b 0.84 0.60 0.24 0.64 0.83 0.62 0.77 0.62 0.50 0.93 0.36 0.23
SWB 301 OPTICOM cs 50 4 24 c 0.91 0.37 0.24 0.63 0.73 0.61 0.70 0.65 0.54 0.88 0.54 0.32
SWB 302 OPTICOM en 44 4 24 d 0.93 0.47 0.15 0.47 0.79 0.59 0.64 0.64 0.49 0.89 0.41 0.24
SWB 401 PSYTECHNICS en 48 24 8 e 0.96 0.27 0.13 0.88 0.56 0.28 0.87 0.51 0.34 0.97 0.30 0.15
SWB 501 SWISSQUAL de 50 4 24 f 0.92 0.32 0.24 0.38 0.75 0.66 0.66 0.62 0.50 0.94 0.31 0.17
SWB 502 SWISSQUAL de 50 4 24 f 0.90 0.42 0.25 0.69 0.67 0.50 0.69 0.61 0.50 0.91 0.43 0.23
SWB 601 TNO nl 50 4 24 g 0.95 0.39 0.22 0.55 0.80 0.67 0.70 0.66 0.56 0.95 0.41 0.20
SWB 602 TNO nl 50 4 24 g 0.96 0.32 0.17 0.53 0.77 0.68 0.64 0.71 0.59 0.96 0.25 0.15
SWB GIPS EXP4 en 36 4 25 h 0.93 0.54 0.07 0.77 0.44 0.20 0.78 0.34 0.17 0.94 0.37 0.07
WB DTAG1 de 66 12 3 i 0.96 0.65 0.08 0.41 0.78 0.61 0.66 0.63 0.41 0.95 0.76 0.14
WB DTAG2 de 76 12 4 i 0.90 0.39 0.16 0.47 0.63 0.48 0.78 0.53 0.29 0.83 0.59 0.21
WB 204 FT DT fr 53 4 24 b 0.85 0.48 0.22 0.66 0.70 0.53 0.86 0.53 0.30 0.91 0.41 0.26
WB 402 PSYTECHNICS en 48 24 8 e 0.98 0.20 0.16 0.86 0.74 0.39 0.84 0.64 0.39 0.96 0.47 0.18
WB 102 ERICSSON sv 54 12 13 a 0.87 0.33 0.17 0.46 0.58 0.48 0.60 0.58 0.42 0.83 0.39 0.26
SWB TSP PL A en 245 4 - j - - - 0.50 0.76 - 0.63 0.71 - 0.95 0.40 -
SWB TSP PL B en 245 4 - k - - - 0.50 0.74 - 0.64 0.68 - 0.95 0.35 -

Test
SWB 103 ERICSSON sv 54 12 8 a 0.90 0.42 0.24 0.64 0.59 0.45 0.77 0.47 0.35 0.83 0.56 0.29
SWB 203 FT DT fr 54 4 24 b 0.86 0.49 0.29 0.49 0.81 0.72 0.70 0.70 0.56 0.85 0.67 0.37
SWB 303 OPTICOM en 54 4 24 d 0.92 0.45 0.16 0.70 0.84 0.48 0.87 0.63 0.30 0.85 0.44 0.33
SWB 403 PSYTECHNICS en 48 24 8 e 0.98 0.23 0.16 0.79 0.61 0.41 0.86 0.49 0.34 0.89 0.61 0.29
SWB 503 SWISSQUAL de 54 4 24 f 0.93 0.34 0.18 0.63 0.73 0.58 0.76 0.64 0.45 0.83 0.49 0.37
SWB 603 TNO nl 48 4 24 g 0.97 0.26 0.16 0.67 0.76 0.59 0.82 0.63 0.43 0.88 0.49 0.33
SWB TUBDIS de 20 2 41 f 0.94 0.56 0.15 0.80 0.49 0.37 0.80 0.48 0.37 0.95 0.47 0.16
SWB TUBLIK de 8 12 20 l* 0.99 0.28 0.16 0.85 0.89 0.74 0.92 0.75 0.51 0.98 0.25 0.18
SWB TUBVUPL de 15 4 36 m* 0.70 0.63 0.26 0.81 0.64 0.37 0.85 0.47 0.32 0.88 0.60 0.29
SWB TSP PL C en 245 4 - n* - - - 0.45 0.75 - 0.58 0.70 - 0.92 0.46 -
SWB TSP PL D en 245 4 - o* - - - 0.54 0.73 - 0.64 0.68 - 0.92 0.43 -
Average (subj. data only)
Training 0.91 0.42 0.19 0.60 0.70 0.53 0.72 0.59 0.43 0.92 0.43 0.20
Test 0.91 0.41 0.19 0.71 0.71 0.52 0.82 0.59 0.40 0.89 0.50 0.29
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Fig. 2. Correlation diagram of the best and worst case results.
The error bars indicate the 95% confidence interval, the red
dashed line represents the 3rd order mapping.

one of the reference based model P.OLQA. The worst case
RMSE*3rd is 0.37 and the best RMSE*3rd 0.16 is obtained
for set SWB TUBDIS, which contains different packet loss
conditions for the codecs G.722 and Opus. The results for the
best and worst case are shown in Figure 2.

Current non-intrusive speech quality models are known
for underestimating the quality impairment impact of packet
loss concealment algorithms. It can be seen that the predic-
tion accuracy of the two baseline models for the databases
SWB TSP PL C and SWB TSP PL D, which focus on packet-

loss, is poor. The proposed model, however, has a high corre-
lation of r = 0.92 to the results obtained by P.OLQA for these
two databases. Furthermore, the results for the databases
with unknown talkers (marked with *) are not worse than for
known talkers, which indicates that the model delivers good
predictions, independent of the talker or sentence.

5. CONCLUSION

We presented a new non-intrusive speech quality assessment
model NISQA for SWB transmission. The model is based on
a novel approach, where a CNN is used to estimate the per-
frame quality, and an RNN aggregates the per-frame values
over time to predict the overall speech quality. We showed
that the proposed model is able to give good prediction re-
sults over the same test set that was used for the P.OLQA
validation, with an average RMSE*3rd of 0.29 and a worst-
case RMSE*3rd of 0.37. Furthermore, we showed that the
model can be used across different talkers and sentences. In
contrast to the current state-of-the-art models, NISQA is able
to predict the speech quality of packet loss concealment con-
ditions of modern speech codecs. Also, the model is made
available on a GitHub for research purposes. In the future,
we will extend our approach to a diagnostic model that esti-
mates the perceptual quality dimensions noisiness, coloration,
discontinuity, and loudness. This work is then planned to be
contributed to the work item P.SAMD of the ITU-T SG12.
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