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ABSTRACT
The success of self-attention in NLP has led to recent applications
in end-to-end encoder-decoder architectures for speech recognition.
Separately, connectionist temporal classification (CTC) has ma-
tured as an alignment-free, non-autoregressive approach to sequence
transduction, either by itself or in various multitask and decoding
frameworks. We propose SAN-CTC, a deep, fully self-attentional
network for CTC, and show it is tractable and competitive for end-to-
end speech recognition. SAN-CTC trains quickly and outperforms
existing CTC models and most encoder-decoder models, with char-
acter error rates (CERs) of 4.7% in 1 day on WSJ eval92 and 2.8% in
1 week on LibriSpeech test-clean, with a fixed architecture and one
GPU. Similar improvements hold for WERs after LM decoding. We
motivate the architecture for speech, evaluate position and down-
sampling approaches, and explore how label alphabets (character,
phoneme, subword) affect attention heads and performance.

Index Terms— speech recognition, connectionist temporal
classification, self-attention, multi-head attention, end-to-end

1. INTRODUCTION

Connectionist temporal classification (CTC) [1] has matured as a
scalable, end-to-end approach to monotonic sequence transduction
tasks like handwriting recognition [2], action labeling [3], and au-
tomatic speech recognition (ASR) [1, 4–11], sidestepping the label
alignment procedure required by traditional hidden Markov model
plus neural network (HMM-NN) approaches [12]. However, the
most successful end-to-end approach to general sequence transduc-
tion has been the encoder-decoder [13] with attention [14]. Though
first used in machine translation, its generality makes it useful to
ASR as well [15–20]. However, the lack of enforced monotonicity
makes encoder-decoder ASR models difficult to train, often neces-
sitating thousands of hours of data [18], careful learning rate sched-
ules [19], pretraining [20], or auxiliary CTC losses [17, 20, 21] to
approach state-of-the-art results. The decoders are also typically au-
toregressive at prediction time [13, 22], restricting inference speed.

Both approaches have conventionally used recurrent layers
to model temporal dependencies. As this hinders parallelization,
later works proposed partially- or purely-convolutional CTC mod-
els [8–11] and convolution-heavy encoder-decoder models [16] for
ASR. However, convolutional models must be significantly deeper
to retrieve the same temporal receptive field [23]. Recently, the
mechanism of self-attention [22, 24] was proposed, which uses
the whole sequence at once to model feature interactions that are
arbitrarily distant in time. Its use in both encoder-decoder and feed-
forward contexts has led to faster training and state-of-the-art results
in translation (via the Transformer [22]), sentiment analysis [25],
and other tasks. These successes have motivated preliminary work

in self-attention for ASR. Time-restricted self-attention was used
as a drop-in replacement for individual layers in the state-of-the-
art lattice-free MMI model [26], an HMM-NN system. Hybrid
self-attention/LSTM encoders were studied in the context of listen-
attend-spell (LAS) [27], and the Transformer was directly adapted
to speech in [19, 28, 29]; both are encoder-decoder systems.

In this work, we propose and evaluate fully self-attentional net-
works for CTC (SAN-CTC). We are motivated by practicality: self-
attention could be used as a drop-in replacement in existing CTC-
like systems, where only attention has been evaluated in the past
[30, 31]; unlike encoder-decoder systems, SAN-CTC is able to pre-
dict tokens in parallel at inference time; an analysis of SAN-CTC
is useful for future state-of-the-art ASR systems, which may equip
self-attentive encoders with auxiliary CTC losses [17, 20]. Unlike
past works, we do not require convolutional frontends [19] or in-
terleaved recurrences [27] to train self-attention for ASR. In Sec-
tion 2, we motivate the model and relevant design choices (position,
downsampling) for ASR. In Section 3, we validate SAN-CTC on the
Wall Street Journal and LibriSpeech datasets by outperforming ex-
isting CTC models and most encoder-decoder models in character
error rates (CERs), with fewer parameters or less training time. Fi-
nally, we train our models with different label alphabets (character,
phoneme, subword), use WFST decoding to give word error rates
(WERs), and examine the learned attention heads for insights.

2. MODEL ARCHITECTURES FOR CTC AND ASR

Consider an input sequence of T feature vectors, viewed as a
matrix X ∈ RT×dfr . Let L denote the (finite) label alphabet,
and denote the output sequence as y = (y1, . . . , yU ) ∈ LU .
In ASR, X is the sequence of acoustic frames, L is the set
of graphemes/phonemes/wordpieces, and y is the corresponding
ground-truth transcription over L.

For CTC, one assumes U ≤ T and defines an intermediate al-
phabet L′ = L∪{−}, where ‘−’ is called the blank symbol. A path
is a T -length sequence of intermediate labels π = (π1, . . . , πT ) ∈
L′T . Paths are related to output sequences by a many-to-one map-
ping that collapses repeated labels then removes blank symbols:

B : L′T → L≤T , e.g., (a, b,−,−, b, b,−, a) 7→ (a, b, b, a). (1)

In this way, paths are analogous to framewise alignments in the
HMM-NN framework. CTC models the distribution of sequences
by marginalizing over all paths corresponding to an output:

P (y | X) =
∑

π∈B−1(y) P (π | X). (2)

Finally, CTC models each P (π | X) non-autoregressively, as a se-
quence of conditionally-independent outputs:

P (π | X) =
∏T
t=1 P (πt, t | X). (3)
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This model assumption means each P (πt, t | X) could be computed
in parallel, after which one can do prediction via beam search, or
training with gradient descent using the objective LCTC(X,y) =
− logP (y | X); the order-monotonicity of B ensures LCTC can be
efficiently evaluated with dynamic programming [1, 4].

2.1. Recurrent and convolutional models

In practice, one models P (π, t | X) with a neural network. As
inspired by HMMs, the model simplification of conditional indepen-
dence can be tempered by multiple layers of (recurrent) bidirectional
long short-term memory units (BLSTMs) [1–4]. However, these are
computationally expensive (Table 1), leading to simplifications like
gated recurrent units (GRUs) [8,32]; furthermore, the success of the
ReLU(x) = max(0, x) nonlinearity in preventing vanishing gradi-
ents enabled the use of vanilla bidirectional recurrent deep neural
networks (BRDNNs) [5,6,33] to further reduce operations per layer.

Convolutions over time and/or frequency were first used as ini-
tial layers to recurrent neural models, beginning with HMM-NNs
[34] and later with CTC, where they are viewed as promoting in-
variance to temporal and spectral translation in ASR [8], or image
translation in handwriting recognition [35]; they also serve as a form
of dimensionality reduction (Section 2.4). However, these networks
were still bottlenecked by the sequentiality of operations at the re-
current layers, leading [8] to propose row convolutions for unidirec-
tional RNNs, which had finite lookaheads to enable online process-
ing while having some future context.

This led to convolution-only CTC models for long-range tem-
poral dependencies [9–11]. However, these models have to be very
deep (e.g., 17-19 convolutional layers on LibriSpeech [23]) to cover
the same context (Table 1). While in theory, a relatively local con-
text could suffices for ASR, this is complicated by alphabets L which
violate the conditional independence assumption of CTC (e.g., En-
glish characters [36]). Wide contexts also enable incorporation of
noise/speaker contexts, as [27] suggest regarding the broad-context
attention heads in the first layer of their self-attentional LAS model.

2.2. Motivating the self-attention layer
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Fig. 1: Self-attention and CTC

We now replace recurrent and convolutional layers for CTC with
self-attention [24]. Our proposed framework (Figure 1a) is built
around self-attention layers, as used in the Transformer encoder [22],
previous explorations of self-attention in ASR [19, 27], and defined
in Section 2.3. The other stages are downsampling, which reduces
input length T via methods like those in Section 2.4; embedding,

which learns a dh-dim. embedding that also describes token posi-
tion (Section 2.5); and projection, where each final representation is
mapped framewise to logits over the intermediate alphabet L′.

A layer’s structure (Figure 1b) is composed of two sublayers.
The first implements self-attention, where the success of attention in
CTC and encoder-decoder models [14, 31] is parallelized by using
each position’s representation to attend to all others, giving a con-
textualized representation for that position. Hence, the full receptive
field is immediately available at the cost of O(T 2) inner products
(Table 1), enabling richer representations in fewer layers.

Model Operations
per layer

Sequential op-
erations

Maximum
path length

Recurrent O(Td2) O(T ) O(T )
Convolutional O(kTd2) O(1) O(T/k)
Convolutional
(strided/dilated/pooled)

O(kTd2) O(1) O(logk(T ))

Self-attention O(T 2d) O(1) O(T )
Self-attention
(restricted)

O(kTd) O(1) O(T/k)

Table 1: Operation complexity of each layer type, based on [22]. T
is input length, d is no. of hidden units, and k is filter/context width.

We also see inspiration from convolutional blocks: residual con-
nections, layer normalization, and tied dense layers with ReLU for
representation learning. In particular, multi-head attention is akin to
having a number of infinitely-wide filters whose weights adapt to the
content (allowing fewer “filters” to suffice). One can also assign in-
terpretations; for example, [27] argue their LAS self-attention heads
are differentiated phoneme detectors. Further inductive biases like
filter widths and causality could be expressed through time-restricted
self-attention [26] and directed self-attention [25], respectively.

2.3. Formulation

Let H ∈ RT×dh denote a sublayer’s input. The first sublayer per-
forms multi-head, scaled dot-product, self-attention [22]. For each
head i of nhds, we learn linear mapsW (i)

Q ,W
(i)
K ∈ Rdh×dk ,W (i)

V ∈
Rdh×dh/nhds . Left multiplication by H give the queries Q(i), keys
K(i), and values V (i) of the i-th head, which combine to give

HdAtt(i) = σ
(
Q(i)K(i)>/

√
dh

)
V (i), (4)

where σ is row-wise softmax. Heads are concatenated along the
dh/nhds axis to give MltHdAtt = [HdAtt(1), . . . ,HdAtt(nhds)].
The second sublayer is a position-wise feed-forward network [22]
FFN(H) = ReLU(HW1 + b1)W2 + b2 where parameters
W1 ∈ Rdh×dff , b1 ∈ Rdff , W2 ∈ Rdff×dh , b2 ∈ Rdh are learned,
with the biases b1, b2 broadcasted over all T positions. This sub-
layer aggregates the multiple heads at time t into the attention layer’s
final output at t. All together, the layer is given by:

MidLyr(H) = LN(MltHdAtt(H) +H), (5)
SelfAttLyr(H) = LN(FFN(MidLyr(H)) + MidLyr(H)). (6)

2.4. Downsampling

In speech, the input length T of frames can be many times larger
than the output length U , in contrast to the roughly word-to-word
setting of machine translation. This is especially prohibitive for
self-attention in terms of memory: recall that an attention matrix
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of dimension Q(i)K(i)> ∈ RT×T is created, giving the T 2 fac-
tor in Table 1. A convolutional frontend is a typical downsam-
pling strategy [8,19]; however, we leave integrating other layer types
into SAN-CTC as future work. Instead, we consider three fixed ap-
proaches, from least- to most-preserving of the input data: subsam-
pling, which only takes every k-th frame; pooling, which aggregates
every k consecutive frames via a statistic (average, maximum); re-
shaping, where one concatenates k consecutive frames into one [27].
Note that CTC will still require U ≤ T/k, however.

2.5. Position

Self-attention is inherently content-based [22], and so one often en-
codes position into the post-embedding vectors. We use standard
trigonometric embeddings, where for 0 ≤ i ≤ demb/2, we define

PE(t, 2i) = sin t

100002i/demb
, PE(t, 2i+ 1) = cos t

100002i/demb
.

for position t. We consider three approaches: content-only [21],
which forgoes position encodings; additive [19], which takes
demb = dh and adds the encoding to the embedding; and con-
catenative, where one takes demb = 40 and concatenates it to
the embedding. The latter was found necessary for self-attentional
LAS [27], as additive encodings did not give convergence. However,
the monotonicity of CTC is a further positional inductive bias, which
may enable the success of content-only and additive encodings.

3. EXPERIMENTS

We take (nlayers, dh, nheads, dff) = (10, 512, 8, 2048), giving ∼30M
parameters. This is on par with models on WSJ (10-30M) [4,5,9] and
an order of magnitude below models on LibriSpeech (100-250M)
[8, 23]. We use MXNet [37] for modeling and Kaldi/EESEN [7, 38]
for data preparation and decoding. Our self-attention code is based
on GluonNLP’s implementation. At train time, utterances are sorted
by length: we exclude those longer than 1800 frames (�1% of each
training set). We take a window of 25ms, a hop of 10ms, and con-
catenate cepstral mean-variance normalized features with temporal
first- and second-order differences.1 We downsample by a factor of
k = 3 (this also gave an ideal T/k ≈ dh for our data; see Table 1).

We perform Nesterov-accelerated gradient descent on batches of
20 utterances. As self-attention architectures can be unstable in early
training, we clip gradients to a global norm of 1 and use the standard
linear warmup period before inverse square decay associated with
these architectures [19, 22]. Let n denote the global step number of
the batch (across epochs); the learning rate is given by

LR(n) = λ√
dh

min
(

n
n1.5

warmup
, 1√

n

)
, (7)

where we take λ = 400 and nwarmup as a hyperparameter. However,
such a decay led to early stagnation in validation accuracy, so we
later divide the learning rate by 10 and run at the decayed rate for 20
epochs. We do this twice, then take the epoch with the best validation
score. Xavier initialization gave validation accuracies of zero for the
first few epochs, suggesting room for improvement. Like previous
works on self-attention, we apply label smoothing (see Tables 2, 3, 5;
we also tried model averaging to no gain). To compute word error
rates (WERs), we use the dataset’s provided language model (LM)
as incorporated by WFST decoding [7] to bridge the gap between
CTC and encoder-decoder frameworks, allowing comparison with
known benchmarks and informing systems that incorporate expert
knowledge in this way (e.g., via a pronunciation lexicon).
1Rescaling so that these differences also have var. ≈ 1 helped WSJ training.

Model dev93 eval92
CER WER CER WER

CTC (BRDNN) [5] — — 10.0 —
CTC (BLSTM) [4] — — 9.2 —
CTC (BLSTM) [17] 11.5 — 9.0 —
Enc-Dec (4-1) [17] 12.0 — 8.2 —
Enc-Dec+CTC (4-1) [17] 11.3 — 7.4 —
Enc-Dec (4-1) [39] — — 6.4 9.3
CTC/ASG (Gated CNN) [40] 6.9 9.5 4.9 6.6
Enc-Dec (2,1,3-1) [41] — — 3.6 —

CTC (SAN), reshape, additive 7.1 9.3 5.1 6.1
+ label smoothing, λ = 0.1 6.4 8.9 4.7 5.9

Table 2: End-to-end, MLE-based, open-vocab. models trained on
WSJ. Only WERs incorporating the extended 3-gram LM or a 4-
gram LM (Gated CNN) are listed.

Model dev93 eval92
PER WER PER WER

CTC (BRDNN) [7] — — — 7.87
CTC (BLSTM) [11] — 9.12 — 5.48
CTC (ResCNN) [11] — 9.99 — 5.35
Ensemble of 3 (voting) [11] — 7.65 — 4.29

CTC (SAN), reshape, additive 7.12 8.09 5.07 4.84
+ label smoothing, λ = 0.1 6.86 8.16 4.73 5.23

Table 3: CTC phoneme models with WFST decoding on WSJ.

3.1. Wall Street Journal (WSJ)

We train both character- and phoneme-label systems on the 80-hour
WSJ training set to validate our architectural choices. Similar to
[17, 19], we use 40-dim. mel-scale filter banks and hence 120-dim.
features. We warmup for 8000 steps, use a dropout of 0.2, and switch
schedules at epoch 40. For the WSJ dataset, we compare with similar
MLE-trained, end-to-end, open-vocabulary systems in Table 2. We
get an eval92 CER of 4.7%, outdoing all previous CTC-like results
except 4.6% with a trainable frontend [40]. We use the provided
extended 3-gram LM to retrieve WERs. For phoneme training, our
labels come from the CMU pronunciation lexicon (Table 3). These
models train in one day (Tesla V100), comparable to the Speech
Transformer [19]; however, SAN-CTC gives further benefits at in-
ference time as token predictions are generated in parallel.

We also evaluate design choices in Table 4. Here, we con-
sider the effects of downsampling and position encoding on accu-
racy for our fixed training regime. We see that unlike self-attentional
LAS [27], SAN-CTC works respectably even with no position en-
coding; in fact, the contribution of position is relatively minor (com-
pare with [21], where location in an encoder-decoder system im-
proved CER by 3% absolute). Lossy downsampling appears to pre-
serve performance in CER while degrading WER (as information
about frame transitions is lost). We believe these observations align
with the monotonicity and independence assumptions of CTC.

Inspired by [27], we plot the standard deviation of attention
weights for each head as training progresses; see Figure 2 for details.
In the first layers, we similarly observe a differentiation of variances,
along with wide-context heads; in later layers, unlike [27] we still see
mild differentiation of variances. Inspired by [26], we further plot
the attention weights relative to the current time position (here, per
head). Character labels gave forward- and backward-attending heads
(incidentally, averaging these would retrieve the bimodal distribution
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Fig. 2: Average attention weights over WSJ’s test set. The left half is a character model; the right half is a phoneme model. Each curve
corresponds to a head, at layers 1 and 10, of representative SAN-CTC models (reshape + additive embedding). The first row charts standard
deviation over time; the second row charts the attention magnitudes relative to position, where 0 represents attending to the same position.

Downsampling Position embedding dev93
CER WER

reshape content-only 7.62 9.57
reshape additive 7.10 9.27
reshape concatenative 7.10 9.97

pooling (maximum) additive 7.15 10.72
pooling (average) additive 6.82 9.41
subsample additive none none

Table 4: SAN-CTC character model on WSJ with modifications.

in [26]) at all layers. This suggests a gradual expansion of context
over depth, as is often engineered in convolutional CTC. This also
suggests possibly using fewer heads, directed self-attention [25], and
restricted contexts for faster training (Table 1). Phoneme labels gave
a sharp backward-attending head and more diffuse heads. We be-
lieve this to be a symptom of English characters being more context-
dependent than phonemes (for example, emitting ‘tt’ requires look-
ing ahead, as ‘–’ must occur between two runs of ‘t’ tokens).

3.2. LibriSpeech

We give the first large-scale demonstration of a fully self-attentional
ASR model using the LibriSpeech ASR corpus [42], an English
corpus produced from audio books giving 960 hours of training
data. We use 13-dim. mel-freq. cepstral coeffs. and hence 39-dim.
features. We double the warmup period, use a dropout of 0.1,
and switch schedules at epoch 30. Using character labels, we at-
tained a test-clean CER of 2.8%, outdoing all previous end-to-end
results except OCD training [41]. We use the provided 4-gram
LM via WFST to compare WERs with state-of-the-art, end-to-end,
open-vocabulary systems in Table 5. At this scale, even minor
label smoothing was detrimental. We run 70 epochs in slightly
over a week (Tesla V100) then choose the epoch with the best
validation score for testing. For comparison, the best CTC-like
architecture [23] took 4-8 weeks on 4 GPUs for its results.2 The
Enc-Dec+CTC model is comparable, taking almost a week on an

2https://github.com/facebookresearch/wav2letter/issues/11

Model Tok. test-clean test-other
CER WER CER WER

CTC/ASG (Wav2Letter) [9] chr. 6.9 7.2 — —
CTC (DS1-like) [33, 43] chr. — 6.5 — —
Enc-Dec (4-4) [44] chr. 6.5 — 18.1 —
Enc-Dec (6-1) [45] chr. 4.5 — 11.6 —
CTC (DS2-like) [8, 32] chr. — 5.7 — 15.2
Enc-Dec+CTC (6-1, pretr.) [20] 10k — 4.8 — 15.3
CTC/ASG (Gated CNN) [23] chr. — 4.8 — 14.5
Enc-Dec (2,6-1) [41] 10k 2.9 — 8.4 —

CTC (SAN), reshape, additive chr. 3.2 5.2 9.9 13.9
+ label smoothing, λ = 0.05 chr. 3.5 5.4 11.3 14.5
CTC (SAN), reshape, concat. chr. 2.8 4.8 9.2 13.1

Table 5: End-to-end, MLE-based, open-vocab. models trained on
LibriSpeech. Only WERs incorporating the 4-gram LM are listed.

older GPU (GTX 1080 Ti) to do its∼12.5 full passes over the data.3

Finally, we trained the same model with BPE subwords as CTC
targets, to get more context-independent units [36]. We did 300
merge operations (10k was unstable) and attained a CER of 7.4%.
This gave a WER of 8.7% with no LM (compare with Table 5’s LM-
based entries), and 5.2% with a subword WFST of the LM. We still
observed attention heads in both directions in the first layer, suggest-
ing our subwords were still more context-dependent than phonemes.

4. CONCLUSION

We introduced SAN-CTC, a novel framework which integrates a
fully self-attentional network with a connectionist temporal classi-
fication loss. We addressed the challenges of adapting self-attention
to CTC and to speech recognition, showing that SAN-CTC is com-
petitive with or outperforms existing end-to-end models on WSJ and
LibriSpeech. Future avenues of work include multitasking SAN-
CTC with other decoders or objectives, and streamlining network
structure via directed or restricted attention.

3https://github.com/rwth-i6/returnn-experiments/
tree/master/2018-asr-attention/librispeech/
full-setup-attention
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