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ABSTRACT

Attention-based sequence-to-sequence architectures have made
great progress in the speech recognition task. The SpeechTrans-
former, a no-recurrence encoder-decoder architecture, has shown
promising results on small-scale speech recognition data sets in
previous works. In this paper, we focus on a large-scale Mandarin
Chinese speech recognition task and propose three optimization
strategies to further improve the performance and efficiency of the
SpeechTransformer. Our first improvement is to use a much lower
frame rate, which is shown very beneficial to not only the compu-
tation efficiency but also the model performance. The other two
strategies are scheduled sampling and focal loss, which are both
very effective to reduce the character error rate (CER). On a 8,000
hours task, the proposed improvements yield 10.8%-26.1% relative
gain in CER on four different test sets. Compared to a strong hy-
brid TDNN-LSTM system, which is trained with LF-MMI criterion
and decoded with a large 4-gram LM, the final optimized Speech-
Transformer gives 12.2%-19.1% relative CER reduction without any
explicit language models.

Index Terms— SpeechTransformer, Much Lower Frame Rate,
Scheduled Sampling, Focal Loss, Large-scale Speech Recognition

1. INTRODUCTION

There has been growing interest in building an end-to-end speech
recognition system, which folds all necessary components into a
single neural framework, such as acoustic model, language model,
pronunciation model, etc [1]. Comparing to a conventional hybrid
system, such an end-to-end system typically has several advantages,
including a simpler training process, allowing a joint optimization
among components and a compact model size. Current end-to-end
speech recognition systems can be categorized into two types: con-
nectionist temporal classification (CTC) based [2, 3, 4, 5, 6] and at-
tention based [7, 8, 9, 10, 11].

Attention-based sequence-to-sequence system was first intro-
duced into speech recognition in [8]. Later on, a model namely
listen, attend and spell (LAS), was examined on a large-scale speech
task [10]. More recently, it shows a superior performance to a con-
ventional hybrid system [11]. In the LAS model, recurrent neural
networks (RNNs) play an essential role when generating sequential
hidden representations (encoding) and emitting characters according
to soft alignment at different time steps (decoding). Unfortunately,
RNNs suffer from slow computation speed and may not be able
to optimally exploit long-range context. These become especially
severe for speech recognition task since speech sequences are com-
monly quite long.

Recently, a model called Transformer was proposed on machine
translation (ML) task [12], which eschews recurrence and relies en-

tirely on self-attention to compute representations of its input and
output sequences. The self-attention mechanism in this model re-
lates different positions in a single sequence to extract a higher level
representation. This mechanism is quite attractive for two character-
istics. The first one is its high computational efficiency. It can be
efficiently implemented through batched tensor multiplication. The
second one is its modeling power of context relevance. It allows di-
rect conditioning on both short-range and long-range context, with-
out the need to pass information step by step as is the case with
RNNs. These two features are exactly needed in the attention-based
end-to-end speech recognition systems, due to the long speech se-
quences.

The Transformer was first introduced into speech recognition
in [13]. This model was called SpeechTransformer and was exam-
ined on the WSJ task. Then in [14, 15], the authors investigated this
model on Mandarin Chinese ASR task (HKUST dataset) with differ-
ent modeling units, and found the character based model performs
best. However, the amount of training data in these three works is
relatively small (less than 200 hours). The SpeechTransformer’s per-
formance on large-scale ASR task is still an open question.

This paper focuses on a large-scale Mandarin Chinese ASR task
containing 8000 hours data, and makes three improvements to the
SpeechTransformer model. The first one is much lower frame rate
(mLFR). We show that reducing the frame rate from 33.3 Hz in
[14, 15] to a much lower one, e.g, 16.7 Hz, is quite beneficial to
the performance. It is achieved by downsampling the frames to
the desired rate after features are extracted and stacked. This fea-
ture processing reduces the length of input sequence, thus improves
the computational efficiency significantly. What’s more, it makes
both the encoder self-attention and decoder-encoder attention much
easier. The second improvement is scheduled sampling (SS) [16],
which feeds the previous label prediction during training rather than
ground-truth. SS was applied to LAS model in [2, 11], and in this
work, it’s introduced into the SpeechTransformer successfully. As
for the third one, we include the focal loss (FL) [17] during the
training process, which is a dynamically scaled cross entropy loss
and down-weights the loss assigned to well-classified examples. FL
can address the class imbalance problem, which is quite serious with
Chinese characters as modeling units, even with 8000 hours training
data. Overall, all these three improvements bring 10.8% to 26.1%
relative gain in character error rate (CER). The final SpeechTrans-
former model shows 12.2% to 19.1% relative CER reduction com-
pared to a strong hybrid baseline, whose acoustic model is a TDNN-
LSTM trained with lattice-free MMI (LF-MMI) objective function
[18, 19]. It should be noted that there is no extra language model
(LM) in the SpeechTransformer, while the hybrid baseline system is
decoded with a 4-gram LM containing 41M N-grams. These exper-
imental results show the great potential of the SpeechTransformer.

The remainder of this paper is organized as follows. Section 2
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describes three improvements to the SpeechTransformer in details.
The related work is introduced in Section 3. We report our experi-
ments in Section 4 and 5 and conclude this work in Section 6.

2. IMPROVEMENTS TO SPEECHTRANSFORMER

In this section, we will first introduce the model structure of the
SpeechTransformer, and then describe the three improvements to it
in details.

2.1. SpeechTransformer

The architecture of the SpeechTransformer is basically belongs to
the attention-based encoder-decoder structure. It stacks multi-head
attention (MHA) and position-wise, fully connected layers for both
the encoder and decoder. The encoder is composed of a stack of
N identical layers, and each one has two sub-layers: one is a MHA,
and the other is a position-wise feed-forward network. Residual con-
nections are employed around each of the two sub-layers, followed
by a layer normalization. The decoder’s structure is similar to the
encoder except inserting a third sub-layer to perform multi-head at-
tention over the output of the encoder stack. To prevent leftward
information flow and preserve the auto-regressive property in the de-
coder, all the values corresponding to illegal connections are masked
out in the self-attention sub-layers of the decoder. In addition, po-
sitional encodings are added to the input of encoder and decoder,
injecting some position information in the sequence.

In the SpeechTransformer, attention occurs in three different
places. The first one is in decoder-encoder attention layers. This
allows every position in the decoder to attend over all positions in
the input sequence. The other two happen in encoder self-attention
and decoder self-attention layers respectively, where attention re-
lates different positions in the input or the output sequence to extract
a more expressive representation. It’s obvious that the computation
cost of these three attentions is determined by the length of input and
output sequences. Unfortunately, speech sequences are commonly
quite long. Thus our first improvement to the SpeechTransformer
is to use a much lower frame rate to reduce the length of input se-
quence.

2.2. Much Lower Frame Rate

Lower frame rate (LFR) modeling is not new. It has been applied to
conventional hybrid ASR system [18, 19, 20], CTC end-to-end mod-
els [21] and attention-based end-to-end models [11, 14, 15]. The
typical rate in previous LFR works is 33.3 Hz, while in this work we
show that reducing this number to a much lower one, e.g, 16.7 Hz, is
quite beneficial to the SpeechTransformer. It is achieved by down-
sampling the frames to the desired rate after features are extracted
and stacked, just as Figure 1 showing, where n is the subsampling
factor and the resulting frame rate is 100/n.

We believe that this much lower frame rate (mLFR) has three
advantages. The first one is it can improve the computation effi-
ciency significantly, which is very straightforward. The second one
is that it makes the encoder self-attention much easier. Compared
with the word sequence in ML, the speech feature sequence in ASR
is much longer. Moreover, the speech frames evolves rather slowly
(the features are typically computed every 10ms), and there is no
clear boundaries between the adjacent ones. It is therefore more dif-
ficult for the encoder self-attention to compute the similarity of each
pair of frames. The mLFR processing, feature stacking and down-
sampling, will produce more sparse but more informative features,

thus can alleviate this problem. As for the third advantage, mLFR
is also conducive to the decoder-encoder attention, which becomes
easier over the much shorter sequence of encoder output. In this
work, we tried different combinations of n and m, and the results
are shown in the experiments part.
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Fig. 1. mLFR processing with subsampling factor n = 4 and stack-
ing number of frames m = 5.

2.3. Scheduled Sampling

Scheduled sampling (SS) [16] is a sampling mechanism that will ran-
domly decide whether to use the ground-truth label or the previous
prediction. This process helps to reduce the gap between training and
inference behavior. SS has been applied to LAS model in [2, 11], and
in this work, we introduce it into the SpeechTransformer and inves-
tigate three kinds of schedule to ramp up the sampling probability:

• Linear:

ε(i) = min(εmax, εmax ·
i−Nst

Ned −Nst
) (1)

• Exponential:

ε(i) = exp (
log (0.01)

Ned −Nst
)max(Ned−i,0.0) (2)

• Sigmoid:

ε(i) = 1.0− Ned −Nst
exp((i−Nst)/(Ned−Nst)) + (Ned −Nst)

(3)

where 0 < εmax ≤ 1 is the maximum probability to sample the
prediction, Nst is the starting step to employ scheduled sampling
andNed is the step that reaches εmax. i ≥ Nst is the current training
step and ε(i) represents the current sampling rate.

2.4. Focal Loss

The modeling units in this work are Chinese characters, which are
very simple and intuitive. Unfortunately, the frequency distribution
of characters in the training data approximately follows a Zipf’s law
[22]: most of the tokens in a corpus are accounted for by a small
number of high frequency characters and there are many low fre-
quency ones. As a result, the class imbalance problem is still quite
serious even though our training corpus contains 8000 hours data.
To alleviate it, we include focal loss (FL) [17] into the training pro-
cess, which is a reshaped cross entropy (CE) that down-weights the
loss assigned to well-classified examples and thus focuses training
on hard ones. FL is defined as:

FL (pt) = −αt(1− pt)γ log (pt) (4)

where αt ∈ [0, 1] represents the weighting factor, and γ ∈ [0, 5] is
the tunable focusing parameter. As far as we know, this is the first
time that FL is introduced into the ASR task.
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3. RELATED WORK

The SpeechTransformer was first proposed by [16] and then it was
studied on Mandarin Chinese ASR task in [14, 15]. An important
difference of this work from the previous ones is that we focus on
a large-scale ASR task, which contains 8000 hours training data.
In addition, we propose three improvements to further promote the
performance and efficiency of the SpeechTransformer.

Self-attention has been applied to acoustic modeling in the con-
ventional hybrid system [23], where a restricted self-attention layer
was introduced into TDNN and TDNN-LSTM models. It has also
been applied in the LAS model architecture [24], where the RNN
encoder was partially replaced with self-attention. In these two pa-
pers, self-attention can be regarded as an improvement to the original
models. While in the SpeechTransformer, self-attention plays a very
important role and fully eschews recurrence.

4. EXPERIMENTAL SETUPS

4.1. Data Sets

We focus on a Mandarin ASR task, of which the training set contains
8000 hours mobile recording data. No foreign words appear in this
corpus, and the code-switching ASR with the SpeechTransformer
will be left for future work. The performance is evaluated on four
test sets, two of them are public-available, and the remaining two
come from our real traffic:

• AiShell dev: the development set of the released corpus
AiShell-1 [25], containing 14326 utterances.

• AiShell test: the test set of the released corpus AiShell-1,
containing 7176 utterances.

• LiveShow: a real traffic test set from live show, containing
5766 utterances.

• VoiceComment: a real traffic test set from voice comment,
containing 5998 utterances.

4.2. Hybrid Baseline

The acoustic model in our hybrid baseline system is a TDNN-LSTM
[19], trained with LF-MMI criterion computed on 33.3 Hz outputs.
The structure of TDNN-LSTM follows [19], containing 7 TDNN
layers and 3 LSTM layers. The dimension of each TDNN layer, and
the the cell number of each LSTM layer, are both set to 1024. For
each LSTM, a recurrent projection layer is added with a dimension
of 512. 40-dimensional MFCCs features without cepstral truncation
[26] are extracted with a 25ms window and shifted every 10ms. The
language model used in the hybrid system is a 4-gram LM with 41M
N-grams, trained with a large amount of text data. TDNN-LSTM has
been shown to outperform a Bidirectional LSTM (BLSTM) model
[19], thus our hybrid system is a quite strong baseline.

Table 1. CERs (%) of hybrid baseline system and the basic Speech-
Transformer model. In the table, ST is short for the SpeechTrans-
former and VoiceCom is short for VoiceComment.

Models Test Sets
AiShell dev AiShell test LiveShow VoiceCom

Hybrid 4.18 4.99 31.37 8.39
ST 4.54 5.51 30.89 8.61

4.3. SpeechTransformer Baseline

All the SpeechTransformer models in this work are trained with
the same features as the hybrid baseline. Global mean subtraction
and variance normalization are applied for the raw features. For
the SpeechTransformer baseline, the features are firstly stack with
3 frames to the left and then downsampled to 33.3 Hz frame rate, or
equivalently, 30ms frame advance, same as [14, 15]. There are 6002
output units in total, which contains 5998 Chinese characters, plus
4 extra tokens, i.e., an unknown token <UNK>, a padding token
<PAD>, and sentence start and end <S>/<\S>.

The SpeechTransformer contains 6 encoder and 4 decoder lay-
ers, with a configuration of dmodel = 512, 16 attention heads, and
512 feed forward inner-layer dimension. During training, the sam-
ples are firstly randomly shuffled and then batched together, and each
batch contains 512 sequences. We use the Adam optimizer with
β1 = 0.9, β2 = 0.98, ε = 10−9 and alter the learning rate over
the course of training, according to the formula:

lrate = k · d−0.5
model ·min(n−0.5, n · warmup−n−1.5) (5)

where n is the step number, k is a tunable scalar, and the learning
rate increases linearly for the first warmup n training steps and de-
creases thereafter proportionally to the inverse square root of the step
number. During training, the label smoothing of value εls = 0.2 is
employed [27]. After trained, the last 15 checkpoints are averaged
to make the performance more stable [12]. For evaluation, we used
beam search with a beam size of 3 and length penalty α = 0.6 [28].

Table 1 gives the character error rate (CER) of the hybrid and
the SpeechTransformer baselines. We can see that the performance
of basic SpeechTransformer model is worse than the hybrid baseline
system.

5. EXPERIMENTAL RESULTS

In this section, we explore the three improvements discussed in Sec-
tion 2 with different configurations. The results and analysis will be
depicted in detail.

5.1. Much Lower Frame Rate

Our first set of experiments focus on various settings of different
lower frame rates, which are obtained by first stacking with several
frames then downsampling to the desired frame rate. We guarantee
that there is one to two overlapping frames between two adjacent
generated inputs. The results are summarized in Table 2.

Table 2. CERs (%) of different lower frame rate settings.

Stack LFR Test Sets
AiShell dev AiShell test LiveShow VoiceCom

Left3 33.3 4.54 5.51 30.89 8.61
Left5 25.0 4.52 5.49 30.01 8.75
Left7 16.7 4.41 5.22 29.7 8.13
Left9 12.5 4.58 5.69 31.81 9.68

CERR 2.86% 5.26% 3.85% 5.57%

The first column of Table 2 gives the mLFR settings, for exam-
ple, Left5 25.0 means that for each current frame, the features are
stacked with 5 frames to the left (6 frames in total) and downsam-
pled to 25.0 Hz (with a frame subsample factor of 4, resulting 40ms
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frame advance). The first line in the table, Left3 33.3 is the Speech-
Transformer baseline, and the last line, CERR is the relative CER re-
duction of the best mLFR setting over the basic SpeechTransformer.

According to Table 2, it’s very clear that with the frame rate de-
creasing, the performance of the SpeechTransformer firstly get im-
proved and then decreased. The best performance is obtained at the
frame rate of 16.7 Hz, with a relative 2.86%-5.57% CER reduction
compared to the SpeechTransformer baseline (33.3 Hz) on the four
test sets. We think the reason is that, much lower frame rate results in
much shorter speech sequence length, making both the encoder self-
attention and decoder-encoder attention much easier. What’s more,
the mLFR is quite beneficial to the decoding speed. Our experi-
ments show that the SpeechTransformer with 16.7 Hz can achieve
about 1.5 times speedup in the real time factor (RTF) over the 33.3
Hz baseline.

5.2. Scheduled Sampling

Based on the best mLFR setting (Left7 16.7), the scheduled sam-
pling method is explored in this subsection. The first schedule we
tried is Linear (Equation 1), with three different maximum sampling
probabilities εmax being 0.4, 0.6 and 1.0.

Intuitively, at the beginning, the sampling probability of the pre-
diction should be rather small since the model is not well trained
(otherwise it will add to too much noise and lead to very slow con-
vergence). While at the later training, this probability should be quite
large to sample enough useful examples since the prediction at this
stage is almost all correct. To better simulate this process, we tried
another two forms of schedules, Exponential (Equation 2) and Sig-
moid (Equation 3), which gives smaller values at the beginning and
larger ones near the end compared to Linear function. Table 3 gives
all the results.

Table 3. CERs (%) of various scheduled sampling methods.

Models Test Sets
AiShell dev AiShell test LiveShow VoiceCom

Left7 16.7 4.41 5.22 29.7 8.13
+Lin 0.4 3.91 4.73 28.76 7.61
+Lin 0.6 3.84 4.60 28.03 7.49
+Lin 1.0 3.91 4.78 29.12 7.65
+Exp 3.98 4.74 28.98 7.75
+Sigmoid 3.95 4.78 28.44 7.71
CERR 12.93% 11.88% 5.62% 7.87%

Several observations can be found in Table 3. Firstly, the three
schedule forms, Linear with εmax = 1.0, Exponential and Sigmoid,
which have the same maximum sampling probability, give compara-
ble performance and are better than the model trained without SS.
Secondly, among the three settings of Linear form, the best per-
formance can be obtained with εmax = 0.6, with relative gains
of 5.62% to 12.93% on four test sets over the SpeechTransformer
trained without SS (the CERR in the last line of Table 3).

5.3. Focal Loss

Based on the best configuration of mLFR and SS, we investigate
the focal loss in this subsection. FL is introduced into the training
process after the training accuracy achieves a high value, with the
focusing parameter γ = 2 and the weighting factor α = 0.25 (Equa-
tion 4). With this setting, if the prediction probability of a training
example on the correct label is 0.90, the corresponding focal loss

will be 100× lower than the standard CE. This will in turn increase
the importance of the misclassified examples. The results of FL and
the final results compared to the hybrid and the SpeechTransformer
baseline are listed in Table 4.
Table 4. CERs (%) of focal loss and the final results compare with
the hybrid and speech transformer baseline.

Model Test Sets
AiShell dev AiShell test LiveShow VoiceCom

Left7 16.7 4.41 5.22 29.7 8.13
+Lin 0.6 3.84 4.60 28.03 7.49
+FL 3.38 4.07 27.54 7.35
CERR 11.98% 11.52% 1.57% 1.87%
vs. Hybrid 19.14% 18.44% 12.21% 12.40%
vs. ST 25.55% 26.13% 10.84% 14.63%

In Table 4, the last third line is the relative gain of FL over the
model of Lin 0.6. While the bottom two lines are the relative CER
reduction of the final improved SpeechTransformer model compared
to the hybrid and the SpeechTransformer baselines, respectively. Ac-
cording to the table, FL gives 1.5%-11.9% relative gains, demon-
strating its effectiveness.

Overall, the proposed three improvements to the SpeechTrans-
former bring 10.8%-26.1% relative gains on the four test sets. Com-
pared to the strong hybrid baseline system, the resulting improved
SpeechTransformer gives 12.2%-19.1% relative CER reduction,
without any explicit language model. These experimental results
show the great potential of the SpeechTransformer.

6. CONCLUSIONS

The SpeechTransformer, with self-attention mechanism, is a newer
attention-based encoder-decoder architecture that has been exam-
ined on small-scale speech recognition tasks. It integrates acoustic,
language and pronunciation model into a single neural network
and has no-recurrence. In this work, we explore several optimiza-
tion strategies to further improve the performance and efficiency of
the SpeechTransformer on a large-scale Mandarin Chinese speech
recognition task. Cumulatively, the proposed three optimization
mechanism yield 10.8%-26.1% relative improvements in CER over
the basic SpeechTransformer. The final optimized model shows
12.2%-19.1% relative CER reduction compared to a strong hybrid
TDNN-LSTM system trained with LF-MMI criterion decoded with
a large 4-gram LM.

We note, however, the SpeechTransformer has a very high la-
tency, with a limitation that the entire utterance must be seen by the
encoder, before any labels can be decoded. Therefore, an important
next step is to revise this model with an streaming attention-based
model, such as Neural Transducer [29]. We also find that the Speech-
Transformer is more hungry for training data than the hybrid model
(not shown in this work). We plan to add more data to train the
model. Moreover, integrating the language model into the Speech-
Transformer is also a valuable research direction.
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