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ABSTRACT

Long Short Term Memory Connectionist Temporal Classi-
fication (LSTM-CTC) based end-to-end models are widely
used in speech recognition due to its simplicity in training and
efficiency in decoding. In conventional LSTM-CTC based
models, a bottleneck projection matrix maps the hidden fea-
ture vectors obtained from LSTM to softmax output layer. In
this paper, we propose to use a high rank projection layer
to replace the projection matrix. The output from the high
rank projection layer is a weighted combination of vectors
that are projected from the hidden feature vectors via different
projection matrices and non-linear activation function. The
high rank projection layer is able to improve the expressive-
ness of LSTM-CTC models. The experimental results show
that on Wall Street Journal (WSJ) corpus and LibriSpeech
data set, the proposed method achieves 4% − 6% relative
word error rate (WER) reduction over the baseline CTC sys-
tem. They outperform other published CTC based end-to-end
(E2E) models under the condition that no external data or data
augmentation is applied. Code has been made available at
https://github.com/mobvoi/lstm_ctc.

Index Terms— LSTM, CTC, High Rank Projection

1. INTRODUCTION

Conventional deep neural network HMM hybrid speech
recognition systems [1, 2] usually require two steps in the
training stage. First, a prior acoustic model such as Gaus-
sian mixture models (GMM) is used to generate HMM state
alignments for the speech training data. Based on the acous-
tic features and one-hot training targets generated from the
state alignments, neural networks are trained to predict the
frame-level state posterior probabilities. This separated two-
step training process makes the acoustic model performance
optimization less efficient.

Recently, various end-to-end (E2E) models [3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14] are proposed to bypass the label
alignment stage to directly learn the transducer of a sequence
of acoustic features to a sequence of probabilities over out-
put tokens. These E2E systems can be categorized into CTC
based models [7, 6, 15, 12], sequence to sequence attention
based models [16, 10, 8, 17] and the combination of CTC

together with sequence to sequence attention based models
[18, 4, 19, 3].

Among the aforementioned E2E models, the CTC based
models are widely investigated in the speech community [20,
12, 3, 5], due to its simplicity in training and efficiency in
decoding. In CTC based models, a special blank label is in-
troduced to identify the less informative frames. In addition,
CTC based systems allow repetition of labels. In this way,
CTC based models automatically infer the speech frame and
label alignment (usually by a delay in time), which removes
the state alignment step in training. Using highly efficient
greedy decoding with no involvement of lexicon and language
model, the CTC based model [20] gives competitive results.
In greedy decoding, the predictions are the concatenation of
tokens that correspond to the spikes in posterior distribution.

CTC loss is often used together with LSTM [20, 12, 6].
CTC loss function imposes the conditional independence con-
straints for the output tokens given the whole input feature se-
quence. So it relies on the hidden feature vector of the current
frame to make predictions. Armed with the memory mech-
anism, current frame’s hidden feature vector from LSTM is
able to capture the information from previous frames. In other
words, the current frame label is not predicted based on ex-
clusively current frame features.

In LSTM-CTC based models, to get the posterior proba-
bility of the output labels, a projection matrix maps the hid-
den feature vector to the final output layer. The hidden fea-
ture vector is the output from the last layer in the multi-layer
LSTMs or bidirectional LSTMs. The output layer has the
same dimension as the training labels. The phonemes or the
characters are usually used as labels which have smaller di-
mensions than the LSTM output. So the projection matrix
becomes the bottleneck that limits the expressive capability
of the LSTM-CTC based models. To address similar issues
in language modeling, a mixture of softmaxes method [21] is
used to improve the performance. In this paper, we propose to
use a high rank projection layer to replace the single projec-
tion matrix to improve the expressiveness of the LSTM-CTC
based E2E models.

In the high rank projection layer, one hidden feature vec-
tor is first mapped to multiple vectors by a set of projec-
tion matrices together with non-linear activation function. A
weighted combination of these vectors is used as the output of
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the high rank projection layer. The non-linear activation func-
tion breaks the potential linear correlation among the output
vectors that are obtained by mapping one feature vector via
several projection matrices. So the proposed projection layer
has higher rank than mapping feature vectors with one single
projection matrix.

One simple approach to decode with CTC based models
is to concatenate the non-blank labels corresponding to the
posterior spikes and to remove the continuously repeated out-
put labels. However, such a simple greedy decoding method
lacks the lexicon and language model information that could
be leveraged to constrain the search path in decoding. In
EESEN [12], a WFST based method is applied to integrate
the CTC frame labels, lexicons and language models into one
search graph. In this work, we follow EESEN’s way of doing
decoding with CTC based models.

In CTC training, the actual label sequence is obtained by
inserting blank labels at the beginning, at the end and between
every consistent labels in the original label sequence. The
blank label has a very high prior probability. That is one rea-
son why for the trained CTC model, the majority of frames
would take blank as labels and the non-blank labels only hap-
pen in a very narrow region with peaky distribution. To ad-
dress this issue, similar to EESEN [12], we apply the label
distribution of the augmented label sequence used in CTC
training as prior to normalize the posterior probability dis-
tribution.

We evaluate the proposed high rank LSTM-CTC based
end-to-end speech recognition on Wall Street Journal (WSJ)
[22] and LibriSpeech corpus [23]. For both experiments, no
external data or data augmentation is applied. On both data
sets, the proposed models outperform the baseline model. For
easy comparison and results reproduction, the source code for
this study is released as an open source project1.

The rest of the paper is organized as follows. In Section
2, we briefly review the LSTM-CTC based models in the E2E
speech recognition system. Then we describe the proposed
high rank LSTM-CTC based models. In Section 3, we present
the experiments on WSJ and LibriSpeech benchmark data set.
Finally, we give our conclusions.

2. A HIGH RANK LSTM-CTC BASED MODEL

2.1. LSTM-CTC

Let X = x1, ..., xT denote the input sequence of acous-
tic feature vectors with sequence length T , where xi ∈
Rm. Given X , the E2E ASR system gives p(Y |X) =
p(y1|X), ..., p(yL|X) a sequence of posterior probability
vectors of the output labels, where p(yi|X) is a posterior
probability vector of the output labels at position i. The di-
mension of the posterior probability vector p(yi|X) is K that
is the number of the target labels. The target labels usually

1https://github.com/mobvoi/lstm ctc

are the phonemes or the characters. In this paper, we only use
the phonemes as output labels.

One typical problem for E2E speech recognition is that
the length of output labels L is often shorter than the length
of input speech frames T . To deal with this issue in train-
ing, CTC introduces a special blank label φ that is inserted
between two consecutive labels and allowing for repetitions
of labels. So the label sequence Y is expanded to Ω(Y ) that
has the same length as input sequence. To get the posterior
probability of a label sequence Y , CTC needs to compute and
sum the posterior probabilities of all the possible path π in
Ω(Y ). Under the constraint that given the input sequence,
the posterior probability of each label in a output sequence
is conditionally independent of each other, the CTC loss is
formulated as follows:

p(Y |X) =
∑

π∈Ω(Y )

p(π|X) =
∑

π∈Ω(Y )

T∏
i=1

p(πi|X). (1)

More specifically, in LSTM-CTC models, the sequence
hidden feature vectors H = h1, ..., hT is obtained by feeding
multiple layers of LSTM or bidirectional LSTM with input
acoustic featureX . A projection matrixM shared across over
the whole sequence is used to map the hidden feature vectors
to logit vectors of which each hasK+1 nodes corresponding
to K + 1 labels including blank label φ. The projection can
be formulated as follows:

li = M thi i ∈ 1, ..., T (2)

Softmax activation function is then applied on each logit
vector li to get the posterior probability vector p(πi). Nor-
mally the number of output labels K is relatively small. For
example, there are 71 stressed phones in WSJ data set and
43 unstressed phones in LibriSpeech data set. This projec-
tion matrix becomes the bottleneck for the expressiveness of
the LSTM-CTC models. To address this issue, we proposed
a high rank projection layer to replace the single projection
matrix.

2.2. A High Rank Projection Layer

As illustrated in Fig. 1, in the high rank projection layer, a
set of n projection matrices are used to map the input hidden
feature vector hi (of dimension H) at frame i to a set of logit
vectors li,j (each of dimension N ).

(li,1, ..., li,n) = tanh([M1, ...,Mn]thi) (3)

where n is the predefined number of projection matrices in
this layer. [M1, ...,Mn] is the concatenation of a set of pro-
jection matrices. Each Mj is of dimension H ×N . The logit
vector li at speech frame i is represented as an interpolation
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Fig. 1: A high rank projection layer. A set of logit vectors are ob-
tained by transducing the hidden feature vector hi via a set of projec-
tion matrices Mj where j ∈ (1, ..., n) and Tanh activation function.
These n vectors are then interpolated via a latent weightW . The out-
put vector li is obtained by scaling the weighted interpolation vector
with temperature factor λ.

of the set of logit vectors as follows:

li = λ

n∑
j=1

wi,j li,j (4)

where λ is a predefined scale factor to control the smoothness
of the posterior probabilities. wi,j is the combination weight
computed at time stamp i for the j-th logit vector. It is the
softmax after mapping the hidden feature vector hi to an n-
dimensional vector via WH×n.

ŵi = W thi (5)

wi,j =
exp(ŵi,j)∑n
k=1 exp(ŵi,k)

(6)

The n projection matrices, M1, ...,Mn, and the weight
matrix W are all trained jointly with the rest of network pa-
rameters.

2.2.1. Non-linear activation function and temperature factor

To get a high rank projection, the non-linear activation needs
to be used to break the potential linear correlation among the
projection matrices in the projection layer. Without the non-
linear activation, the logit vector li at speech frame i can be
formulated as follows:

li =

n∑
j=1

wi,jM
t
jhi = M̂ thi, (7)

which is essentially the same as equation (2). The temperature
factor λ controls the smoothness of the label output distribu-
tion. The weighted interpolation usually smooths the output
probability distribution. To make the output probability distri-
bution more discriminative, in this study, we use λ ∈ [10, 20]
to sharp the output distribution.

3. EXPERIMENTS

3.1. Data Sets

We carry out experiments on Wall Street Journal (WSJ) cor-
pus [22] and LibriSpeech corpus [23] to verify the perfor-
mance of the proposed method. The WSJ corpus is a com-
bination of LDC93S6B and LDC94S13B data sets obtained
from LDC. After data preparation, we get 81 hours of tran-
scribed speech audio, from which 95% is selected as training
data, the rest 5% is used as validation data. The development
data (dev93) consists of 503 utterance. And the evaluation
data (eval92) contains 333 utterances. LibriSpeech is an open
source speech corpus2 that has almost 1000 hours read speech
based on public domain audio books. Similar to WSJ data
preparation, among the 960 hours’ train data, we select 95%
of the data for model training and the rest 5% for validation.
In LibriSpeech, the development data and evaluation data are
split into ”clean” and ”other” subsets.

In decoding, we use WSJ provided trigram language
model. In LibriSpeech experiment, to be consistent with pre-
vious studies [24], the provided standard unpruned four-gram
language model3 is used in decoding.

In our experiments, the phonemes are used as CTC la-
bels. For WSJ experiment, the CMU dictionary4 is used as the
lexicon for WFST graph building. Including the blank label,
we extract 72 labels in total from CMU dictionary. In Lib-
riSpeech experiment, we use the unstressed phonemes based
lexicon5 from which 44 labels are extracted as CTC labels.
Due to the lack of forced alignment, CTC training can not
deal with the same word with multiple pronunciations. For
every word, only the first pronunciation is applied to form the
lexicon. We did not use other existing models to find the best
pronunciation per occurrence.

3.2. Model Structure and Hyper-parameter Setup

For both experiments, 120-dimensional feature vector that
consists of 40-dimensional filter bank together with its first
and second order derivations are calculated at each speech
frame. The features are normalized via mean subtraction
and variance normalization per speaker. The splice of the
feature vectors from left, current and right frame (in total
360-dimensional feature vector) is used as the input to bidi-
rectional LSTM. To speed up training, frame skipping is used.
Two out of three frames are skipped during training. Four lay-
ers of bidirectional LSTMs are used to get the hidden feature
vectors. There are 320 hidden neurons in each LSTM layer
with peephole connections. The forget gate bias is set to be 5.
Batch size is set to 64 for experiments on LibriSpeech and 32
for experiments on WSJ. Adam based adaptive learning rate

2http://www.openslr.org/12/
3http://www.openslr.org/resources/11/4-gram.arpa.gz
4http://www.speech.cs.cmu.edu/cgi-bin/cmudict
5http://www.openslr.org/resources/11/librispeech-lexicon.txt
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method is used. The initial learning rate is set to 0.001 for
WSJ experiments and 0.0004 for LibriSpeech experiments,
respectively. The learning rate gets decayed by a factor of 0.7
for WSJ experiments and 0.5 for LibriSpeech experiments
when the model does not improve over validation data. For
the proposed high rank LSTM-CTC based models, we set n
the same as output lable size to achieve the highest rank of
the projection layer.

Due to the fact that some GPU operations are non-
deterministic in tensorflow, the models trained with the same
setting up multiple times would be different. For fair com-
parison, we use the average word error rate of five different
models that are trained with the same setting up.

3.3. Results

Table. 1 gives the WER comparison for different models
on WSJ corpus. Comparing with our baseline model (our-
LSTM-CTC), the proposed model (our-HR-LSTM-CTC) gets
6% and 4% relative WER reduction on dev93 and eval92, re-
spectively. We showed in Eq. (7), our-MOM-LSTM-CTC
is similar to baseline model except that it has more weight
parameters. The results in Table. 1 confirms that remov-
ing non-linear activation function and temperature factor,
the simple mixture of different projection matrices does not
improve over the baseline model.

method lm dev93 eval92
ESPNET[25] c-lstm 12.4 8.9
EESEN[12] 3gram 10.9 7.3
CTC-PL[24]* 3gram 9.2 5.5
DS2[15]* 4gram 5.0 3.6
our-LSTM-CTC 3gram 11.0 7.5
our-MOM-LSTM-CTC 3gram 11.1 7.5
our-HR-LSTM-CTC 3gram 10.3 7.2

Table 1: WER(%) comparison for different models on WSJ dev93
and eval92 data sets. DS2 used 11940 hours audio with additional
data augmentation. CTC-PL also used data augmentation. Our-
LSTM-CTC is our baseline model. Our-MOM-LSTM-CTC is the
mixture-of-matrices model that removes the non-linear activation
function and the temperature factor in the high rank projection layer.
Our-HR-LSTM-CTC is the proposed high rank LSTM-CTC model.
The WER for ”our-” models is the average WER of 5 models trained
with the same parameter setting up.

Table. 2 shows the WER comparison of different mod-
els on the LibriSpeech corpus. The proposed model (our-
HR-LSTM-CTC) shows consistent behavior on both WSJ and
LibriSpeech.

Table. 1 and Table. 2 compare the results from other mod-
els using CTC loss. Due to the lack of open-sourced data,
script and code, to test our models on the exact same settings
as published results is difficult. To present the status of CTC
loss on these two data sets, we only refer the published re-

method lm dev test
clean other clean other

CTC-PL[24]* 4gram 5.1 14.3 5.4 14.7
DS2[15]* 4gram - - 5.3 13.3
E2E-att[18]* 4gram 5.0 14.3 4.8 15.3
E2E-att[18]* LSTM 3.5 11.5 3.8 12.8
our-LSTM-CTC 4gram 5.0 13.4 5.4 13.9
our-MOM-LSTM-CTC 4gram 5.0 13.3 5.5 14.0
our-HR-LSTM-CTC 4gram 4.8 12.9 5.1 13.3

Table 2: WER(%) comparison for different models on LibriSpeech
dev and clean data sets. DS2 is the identical system as in Table. 1.
CTC-PL applies the same algorithm as the CTC-PL in Table. 1, but
on LibriSpeech data with data augmentation. E2E-att used exter-
nal data for language model training. Our-LSTM-CTC is our base-
line CTC model trained on LibriSpeech. Our-MOM-LSTM-CTC is
the model that removes the non-linear activation function and the
temperature factor. Our-HR-LSTM-CTC is the proposed high rank
LSTM-CTC model. The WER for ”our-” models is the average
WER of 5 models trained with the same parameter setting up.

sults here. Note some of the comparisons are not fair, as they
are not trained based on the exact same data. CTC-PL is the
model trained by CTC loss together with policy learning to
optimize WER. In CTC-PL, the training data is augmented
through random perturbations of tempo, pitch, volume, tem-
poral alignment, along with adding random noise. In DS2, it
uses all the public available English corpus together with data
augmentation as training data. E2E-att combines sequence
attention modeling together with CTC loss. It use additional
800M words for language model training. When LSTM based
LM is used in decoding, E2E-att gets the state-of-the-art re-
sult on LibriSpeech. ESPNET in Table. 1 uses a combination
of CTC loss with sequence to sequence loss. However, it does
not use any effective method to leverage the language model
and lexicon information in decoding.

4. CONCLUSIONS

In this paper, a high rank projection layer is proposed to re-
place the bottleneck projection matrix in conventional LSTM-
CTC based models for E2E speech recognition. The output of
the high rank projection layer is a weighted combination of
multiple vectors that are obtained by feeding the hidden fea-
ture vector to a set of projection matrices and going through
a non-linear activation function. On two benchmark corpora,
WSJ and LibriSpeech, the proposed high rank LSTM-CTC
model outperformed the baseline CTC model. On WSJ cor-
pus, compared with baseline model, the proposed model got
nearly 6% relative WER reduction on dev93 and 4% reduc-
tion on eval92. On LibriSpeech corpus, the proposed model
improved the baseline model by relative WER reduction 6%
on test-clean and 4% on test-other, dev-clean and dev-other
subsets.
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