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ABSTRACT

Recurrent neural networks, such as gated recurrent units (GRUs)
and long short-term memory (LSTM), are widely used on acous-
tic modeling for speech synthesis. However, such sequential gener-
ating processes are not friendly to today’s massively parallel com-
puting devices. We introduce a fully convolutional neural network
(CNN) model, which can effiently run on parallel processers, for
speech synthesis. To improve the quality of the generated acoustic
features, we strengthen our model with variational inference. We
also use quasi-recurrent neural networks (QRNNSs) to smoothen the
generated acoustic features. Finally, a high-quality parallel WaveNet
model is used to generate audio samples. Our contributions are two-
fold. First, we show that CNNs with variational inference can gen-
erate highly natural speech on a par with end-to-end models; the use
of QRNNSs further improves the synthetic quality by reducing trem-
bling of generated acoustic features and introduces very little run-
time overheads. Second, we show some techniques to further speed
up the sampling process of the parallel WaveNet model.

Index Terms— convolutional neural network (CNN), quasi-
fully recurrent neural network (QRNN), variational inference, par-
allel WaveNet, text-to-speech (TTS) synthesis

1. INTRODUCTION

The basic framework of statistical parametric speech synthesis
(SPSS) [1] consists of two parts: a) an acoustic model used to pre-
dict acoustic features from given linguistic features; b) a vocoder
used to generate waveforms from acoustic features.

Traditional acoustic models mainly refer to the hidden Markov
model (HMM) [2]. Deep neural networks (DNNs), recurrent neu-
ral networks (RNNs), and related variants are popular as acoustic
models in recent years [3, 4, 5]. Although the RNN-based acous-
tic models can achieve great results, they are not friendly to today’s
massively parallel computers. Tacotron [6], a complicated squence-
to-sequence model utilizing attention mechanism, beats a production
parametric system in terms of naturalness. Tacotron2 [7], using mel
spectrograms as the intermediate feature to connect the acoustic fea-
ture generator and a neural vocoder, yields natural sounding speech
that approaches the audio delity of real human speech. However, the
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end-to-end approach is known to be hard to control compared with
the traditional multi-stage TTS pipeline.

Recent research shows that well-designed convolutional neural
networks can outperform generic recurrent architectures, such as
deep LSTM and GRUs, in several sequence modeling tasks [8].
Variational auto-encoders (VAEs) [9], as one kind of deep gen-
erative models, have shown promising results in generating many
kinds of complicated data, including handwritten digits, faces, house
numbers, CIFAR images, physical models of scenes, segmentation,
and predicting the future from static images [10]. Although VAEs
is known to be able to improve the synthetic samples, there is no
successful result reported on using pure variational architectures to
generate speech from linguistic features. WaveNet [11] is a high-
quality neural vocoder, which auto-regressively generates audio
samples from linguistic features. Parallel WaveNet [12], on the
other hand, can generate audio samples in parallel.

In this paper, we propose a quasi-fully convolutional neural net-
works model with variational inference (QFCVI) for acoustic mod-
eling. The QFCVI model gets linguistic features as input and out-
puts mel spectrograms. On GPUs, the QFCVI model runs much
faster than RNN-based acoustic models. We utilize quasi-recurrent
neural networks (QRNNs) [13] to smoothen the generated acous-
tic features. QRNNSs actually consist of convolutional layers and
a minimalist recurrent pooling function, so they are much faster
than RNNs. The generated mel spectrograms are fed into a paral-
lel WaveNet model to synthesize waveforms. Our model implic-
itly predicts fundamental frequencies (FOs). Compared with directly
generating waveforms from linguistic features and FOs, our approach
requires much less computing resources for model training. Subjec-
tive listening tests show that our QFCVI model can achieve a high
degree of naturalness for standard Chinese speech synthesis on a par
with an improved Tacotron model. We also come up with some tech-
niques to further speed up the parallel WaveNet model.

2. APPROACH

In this section, we introduce in detail the proposed quasi-fully con-
volutional neural network with variants inference (QFCVI) model,
which is based on the variational auto-encoder (VAE) architecture
and consists of a quasi-fully convolutional encoder and decoder. The
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neural vocoder is also briefly described.

2.1. Variational Auto-Encoder Architecture
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Fig. 1. VAE Architecture. We omit the inputs and outputs of the
encoder and decoder for simplicity.

The basic optimization object of conditional VAEs is to mini-
mize the following loss:

L= E.nq[~logP(Y]z, X)] + DIQ(=|Y, X)[|P(z|X)] (D)

where X is linguistic features, and Y is acoustic features, in our
model. For simplicity, we use another view of the above formula.
We treat the KL distance loss term as a regularization to the model
[10].

L= Acrecon + AACKL (2)

The total loss is the sum of two terms: a) acoustic feature recon-
struction loss; b) KL distance as regularization, where )\ is a scalar
hyperparameter. Empirically, we set A = 0.2.

2.1.1. Reconstruction Loss

We use a squared 12 norm distance (i.e. MSE loss) as the reconstruc-
tion loss.
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where T is the number of frames in a sequence, C' is the number of
sample times, z; . is a sample from the output distribution (Q)) of the
encoder at the t-th frame step. Empirically, we set C' = 10.

2.1.2. Frame-wise KL Loss

Instead of using a single latent vector for the whole sequence, the
model infers latent vectors at each frame step.

T
1
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where Q(z]Y, X) is the output distribution of the encoder, P(z|X)

is the true prior. In the context of VAEs, we assume P(z|X) is

N(0,1).

T
Lxi = S DIQ Y, XN, 1) ©
t=1
1 T
= 7 O DIN (e, s7) IV (0, 1) @
t=1
1 T
b Z[tr(s?) i — K — log(det(sf))] ®)
t=1
| XK K K
= 57 2D stk D i — K =23 loglsik)] ©)
t=1 k=1 k=1 k=1

where K is the number of dimensions of the latent space. We set
K = 10 for our model.

2.2. Quasi-Fully Convolutional Encoder & Decoder

1 Decoder - output Block
H A

1 Encod:
R DCN Module
DCN Module i E 4
L) 1 Concatenate
Concatenate H ,
Input Block
PreNet InputBlock | CTTTToopToooTogmToommooood
------- +""""""._+.-.""_A Sample z from Linguistic
Mel Linguistic
spectrogram Feature N(O, 1) or Q(.|Y,X) Feature
(a) Encoder (b) Decoder

Fig. 2. Architecture of the quasi-fully convolutional encoder and
decoder.

The encoder and decoder of our model consist of almost the
same submodules. The architectures of the encoder and decoder are
depicted in Fig.2, while detailed setups of the submodules are shown
in Fig.3.

The PreNet of the encoder consists of two dense layers, each
followed by a dropout layer [6]. The Input Block is a simple 1D
convolution layer with 1 reception field and 256 filters. The dropout
rate is set as 0.1 during training. The Output Block is a little more
complicated than the Input Block. We use a QRNN [13] layer to
smoothen the generated acoustic features in frame axis. Although
QRNN is recurrent-like, the calculation of its recurrent part is very
cheap. A QRNN layer with fo-pooling can be formulated as follow-
ing:

Z = tanh(W x X) (10)
F = o(W; + X) (11)
0 = o(W, +X) (12)
c:=H0c1+(1—1f) Oz (13)
h; =0: ©c; (14)

where * denotes a convolution operator, ® denotes an element-wise
multiplication operator, and o () is a sigmoid function. Instead of
using a TensorFlow python implementation or writing a GPU kernel,
we write a simple TensorFlow kernel to compute c; and h; using
CPU. That fo-pooling computation in CPU is very fast, since the
time complexity is O(TN) ', where T is the number of total time

I'The time complexity of RNNs is O(T'N?2).
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steps, and N is the number of feature channels. Note that we use
QRNN in the decoder only. To speed up training, we also implement
a simple CPU kernel for the backpropagation of fo-pooling. The
convolution layer in the Output Block has 256 filters, the dropout
rate is set as 0.1. Each convolution kernel in the QRNN layer has
128 filters and a reception field of 2.

The dilated convolutional network (DCN) module is a variant
from the architecture proposed in [8]. The module consists of six
Residual Blocks with increasing dilation rate from 1 to 32. The
Residual Block has two 1D dilated convolution layers with 256 fil-
ters and a reception field of 3. Instead of using causal convolution
layers as described in [8], we use standard dilated convolution op-
erations. To speed up the convergence, weight normalization [14] is
applied to all convolution layers in our model. The dropout rate in
the Residual Block is set as 0.2.

Input B'OC"T " Output Block {
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: Weight Norm i ' Conv 1x1 |
: Conv 1x1 ! ; QRNN (optional) |
(a) Input Block (b) Output Block
IResidual Block (k, @) | "
E Dropout i
________________________ | Relu .
' DCN Module ' 1 Weight Norm :
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' . ' | Relu :
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Fig. 3. Detailed setup of the submodules of the encoder and decoder.

2.3. Neural Vocoder

A parallel WaveNet model, trained on ground-truth mel spectro-
grams, is used as the vocoder of our model. The vocoder consisted
of 60 layers, with 64 filters for each residual and gating layers [12].
All parallel WaveNet models in this work are distilled from a teacher
WaveNet model with 24 layers, grouped into 4 dilated residual block
stacks of 6 layers [7].

3. EXPERIMENTS & RESULTS

3.1. Baselines and Conditions

A DNN system, a deep LSTM (DLSTM) system, and an end-to-end
system are used as baselines. The DNN and DLSTM systems are
used at Tencent Al Lab in production. The DNN system consists
of a DNN-based duration model and a DNN-based acoustic model.
The DLSTM system consists of a LSTM-based duration model and
a LSTM-based acoustic model. The LSTM-based acoustic model
consists of 3 unidirectional LSTM layers, each has 256 hidden units,
followed by a linear output layer, which outputs 127-dimensional
acoustic features, including 39-dimensional mel-cepstral coefficients
(MCEPs) plus log energy, 1-dimensional band-aperiodicity parame-
ter (BAP), logarithmic fundamental frequency (LFO0), their first and

second order deltas, and voice/unvoiced (V/UV) decision. The end-
to-end system is an improved Tacotron model [6, 15, 16] with some
modifications - we use 5 convolutional layers followed by a unidi-
rectional GRU layer as the post-net. The GRU layer is intended to
smoothen the generated mel spectrograms since the model predicts 3
frames at each decoding step. We also use a parallel WaveNet model,
which is trained on ground-truth mel spectrograms for simplicity, as
the neural vocoder of our improved Tacotron model. Because we
only focus on the acoustic model, the aforementioned DNN-based
duration model is also used in our QFCVI system. The same front-
end model is shared for all four systems.

A corpus in standard Chinese from a male speaker, which con-
tains about 17 hours of 16kHz speech data, and a corpus in standard
Chinese from a female speaker, which contains about 50 hours of
16kHz speech data, are used for the subjective listening tests. We
use a 50 ms frame size, 5 ms frame hop for the QFCVI and 12.5 ms
frame hop for the improved Tacotron, and a Hann window function
to extract 80-band log-scale mel-frequency spectrograms. Before
taking the log compression, the mel spectrograms are stabilized to
a floor of 1e — 5. We use min-max normalization across each band
of the mel spectrograms. The range of the normalized mel spectro-
grams is limited to [—4, 4]. Since we evaluate the Tacotron model on
Chinese, input sequences consisted of pure phonemes are not a good
choice. We also feed word segmentation information and punctua-
tions to the Tacotron model.

3.2. Training Setup

The QFCVI model is trained for 400,000 global steps with the Adam
optimizer [17] with a minibatch size of 2 utterances and a learning
rate of 0.001, The gradients are clipped by a global norm of 10. The
parallel WaveNet vocoder is trained for 300,000 global steps with
the Adam optimizer with a minibatch size of 2 audio clips, each con-
taining 8,000 timesteps. The parallel WaveNet is trained using the
Probability Density Distillation loss and the Power loss [12]. Other
training hyperparameters are the same as described in [18].

3.3. Subjective Evaluation

10 sentences are used to evaluate all four systems. Each sample
generated by those systems is rated by 34 listeners in terms of natu-
ralness on a scale from 1 to 5 with 1 point increament.”

Name MOS (male) MOS(female)
DNN 3.453+0.113  3.45340.112
DLSTM 3.809+0.109  3.873+0.092
Imp. Tacotron  3.956+0.121  3.373+£0.126
QFCVI 3.926+0.099  4.020+0.096

Table 1. 5-scale mean opinion score (MOS) evaluation in terms of
naturalness with 95% confidence intervals.

Tabel 1 shows the MOS results of 4 systems. Our proposed
model QFCVI achieves a MOS of 3.926+0.099 for the male speaker,
and a MOS of 4.020£0.096 for the female speaker, which surpasses
the scores received by the DNN and LSTM systems. The improved
Tacotron model gets a MOS of 3.956£0.121 for the male speaker,
slightly higher than the score of our QFCVI model, and a MOS of

2Samples are available at https:/mu94w.github.io/QFCVT/ .
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3.373+0.126 for the female speaker, even worse than the DNN sys-
tem. By analyzing the generated samples case by case, we found
that the prosody prediction of the Tacotron model was suffered from
occasional wrong word segmentation. And for the female speaker,
although the Tacotron system can generate high-quality speech au-
dios, which thanks to the parallel WaveNet vocoder, the speech rate
was often too fast.

3.4. Ablation Studies by Case Analysis

3.4.1. Variational Auto-Encoder Architecture

100 150 50 100

(a) With variational encoder. (b) Without variational encoder.

Fig. 4. Case study for variational auto-encoder architecture.

To show the importance of variational auto-encoder architecture,
we trained a pair of models with and without a variational encoder.
As shown in Fig.4, the mel spectrogram generated by the model
without variational inference is much more blurred than the one with
variational inference. Moreover, we found that the prosody of gener-
ated speech by our proposed system can be a little different even fed
with the same sentence. And if we fed all zeros as the latent vector
to the decoder, the generated speech would have poor prosody. So
we conjecture that the latent vectors in our proposed model captured
some prosody information.

3.4.2. QRNN

20 40 60 80

(a) With QRNN layer.

20 40 60 80

(b) Without QRNN layer.

Fig. 5. Case study for QRNN layer in the Output Block of the de-
coder. Red circles are used to mark the differences between two mel
spectrograms.

To show the importance of QRNN, we trained a pair of models
with and without a QRNN layer in the Output Block of the decoder.
As shown in Fig.5, the mel spectrogram generated by the model with
QRNN in the decoder is smoother, more continuous and less trem-
bling than the one without QRNN. Although generic RNNs can also
tackle that problem, we choose QRNN for its high computational
efficiency.

3.5. Further Speedup Parallel WaveNet

Although the parallel WaveNet vocoder is quite fast running on
GPUs, we explored the possibilities for further speedup. We show

two methods here.

Mixed Precision The parallel WaveNet vocoder with mixed pre-
cision is compressed from a trained one with single precision. All
calculations and activations are in 16-bit floating point, except the
output layer of each inverse auto-regressive (IAF) flow.

Softsign We replace both the tanh and sigmoid in all gating lay-
ers of the WaveNet model with the softsign function, which is effi-
cient for mobile CPUs [19] and can also offer speedup for GPUs.

The parallel WaveNet models are trained on the corpora afore-
mentioned at section 3.1. 20 sentences are randomly selected from
the test set as the evaluation set. We use the ground-truth mel spec-
trograms to generate speech audios. Each sample is rated by more
than 10 listeners.

Name MOS (male) MOS (female)
Single Precision ~ 3.985+0.081  4.176£0.099
Mixed Precision  4.023+0.079  4.16140.098
Softsign 3.823+0.101 -

Natural 4.169+0.071  4.176+0.099

Table 2. 5-scale mean opinion score (MOS) evaluation in terms of
quality with 95% confidence intervals.

The MOS results are shown in Table 2. Although the softsign
approach receives a lower MOS, the quality of its generated speech
is acceptably good. Due to the efficiency running on mobile CPUs
and speedup for GPUs, such performance degradation is actually ac-
ceptable for mobile applications. Interestingly, the mixed-precision
model for the male speaker achieves a slightly higher score than the
single-precision one, although it is somewhat counterintuitive, which
indicates that a lower precision, such as 8-bit integer, is worth explor-
ing.

4. CONCLUSION

In this paper, we propose a quasi-fully convolutional neural networks
with variational inference (QFCVI) model to generate mel spectro-
grams from given linguistic features. A parallel WaveNet model is
used as vocoder to convert mel spectrograms to waveforms. Results
of subjective listening tests show that our model can generate speech
with a high degree of naturalness even on a par with an end-to-end
model. Comparing to generate waveforms directly from linguistic
[12], our model can be trained with much less computational re-
sources. Moreover, we found that the mixed precision approach is
a feasible method for further speedup. For future work, we plan to
analyze the latent space of our proposed model for better prosody
generation and control.
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