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ABSTRACT
The generalized command response (GCR) model represents in-

tonation as a superposition of muscle responses to spike command
signals. We have previously shown that the spikes can be predicted
by a two-stage system, consisting of a recurrent neural network and a
post-processing procedure, but the responses themselves were fixed
dictionary atoms. We propose an end-to-end neural architecture that
replaces the dictionary atoms with trainable second-order recurrent
elements analogous to recursive filters. We demonstrate gradient
stability under modest conditions, and show that the system can be
trained by imposing temporal sparsity constraints. Subjective listen-
ing tests demonstrate that the system can synthesize intonation with
high naturalness, comparable to state-of-the-art acoustic models, and
retains the physiological plausibility of the GCR model.

Index Terms— Neural Networks, Digital IIR Filters, Speech
Synthesis, Prosody Modelling, Fujisaki Model

1. INTRODUCTION

Intonation is a prosodic feature of speech that carries non-linguistic
information such as emotion and emphasis. It is crucial to cor-
rectly model it in speech-to-speech translation systems that intend
to transfer paralinguistics between languages, as a distorted pitch
may change the meaning of a sentence. A good model of intonation
is also crucial for the transfer and the synthesis of emotion. In pre-
vious work with colleagues [1], we investigated a physiologically
plausible intonation (F0) model based on the Command-Response
(CR) model of Fujisaki [2]. This Generalized CR (GCR) model rep-
resents the intonation contour as the response of muscle models to
spike command signals.

We studied how a Recurrent Neural Network (RNN) can gener-
ate the command signals of the GCR model to generate intonation by
emulating a spiking neural network [3]. The RNN predicts the po-
sition and amplitude of the command spikes for a given text, which
are filtered by the GCR muscle models to generate the pitch contour.

However, this model has three limitations. First, the muscles
models that filter the spikes are not trainable. Their parameters are
imposed before training the system and may not be optimal. Sec-
ond, the trained RNN is not able to generate true spikes. The ampli-
tude and position of the command signals are split into two separate
channels, requiring post-processing to recover spikes. This post-
processing operation prevents gradient back-propagation from the
pitch curve. Third, the system cannot be used to predict the phrase
component used to reconstruct the log of F0 (LF0).

In this paper we propose to overcome the aforementioned limi-
tations by training an End-to-End (E2E) neural network to generate
LF0. This system includes trainable muscle models and the gener-
ation of phrase components, both without post-processing. To build
this system, we take advantage of the existing model and replace
the post-processing steps by trainable muscle models, as shown in
Figure 1. The model is a source-filter model which differs from
the commonly used speech production models by generating only
LF0 and using temporal static but trained filters. Additionally, the
source and filter prediction models are trained together in an E2E
fashion. The filter itself is similar to a second-order Infinite Impulse
Response (IIR) synapse, which has been analysed before [4, 5]. We
extend that analysis by investigating and solving the gradient explo-
sion issues that can prevent the convergence of recurrent units [6],
when applying back-propagation through time [7].

Of course, any modern TTS systems can predict LF0 (e.g. [8]).
The proposed system differs in the sense that it retains the physio-
logically inspired behaviour of the GCR model, by enforcing spiky
command signals and muscle model filtering. This will allow us to
conserve its transfer capability and physiological interpretation.
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Fig. 1: GCR intonation synthesis systems. Left: previous model.
Right: proposed E2E model. The post-processing step is replaced
by trainable muscle models to enable training directly on the LF0

curve in an E2E fashion.

In the following sections, we explain how muscle models can be
embedded in an E2E neural network, and we derive the associated
stability conditions that prevent gradient explosion during training.
We then describe the architecture of the proposed system and how
it improves on the previous implementation by adding phrase com-
ponent modelling ability while retaining the behaviour of a GCR
model. Finally, the obtained system is compared to a strong baseline
through objective and subjective scores.
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2. E2E INTONATION SYNTHESIS

2.1. Muscle models

In the GCR model, the output filters approximate muscle activa-
tion. Different models for muscle response are investigated in [9].
Even though previous research [10, 11] has shown that higher or-
der systems can improve intonation modelling performance, we use
a second-order Spring-Damper-Mass (SDM) muscle model in this
work. This choice is consistent with Fujisaki’s assumption that in-
tonation is generated by second order systems [12]. Moreover, it is
possible to obtain more complex responses by combining multiple
second order models, so that this choice is not restrictive.

The generic discrete transfer function of an SDM system is

y(k) = Gx(k) + αy(k−1) + βy(k−2) (1)

with x the command signal, y the response, G the gain, α and β the
recurrence coefficients of the model, and k the discrete time step. It
is equivalent to the equation of a second-order linear all-pole digital
filter (Figure 2).
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Fig. 2: Second-order linear all-pole digital filter.

Given that the SDM system is second-order time recurrent, it
would make sense to model it by an RNN. Implementations such as
LSTMs or GRUs can indeed learn second order recurrence. Nev-
ertheless their behaviour is strongly non-linear and they are over-
parametrized for an SDM model. Therefore we propose a simpler
implementation of linear second-order recurrent units based on (1).

We expect that gradient descent optimization can be used for the
extraction of the filter parameters, as iterative methods have proven
to be efficient for digital filter design problems [13]. However, gra-
dient explosion issues are inherent to recurrent units training [6]. To
study the convergence properties of the model, we derive the gradi-
ent equations of (1) using back-propagation through time [7]. The
obtained expressions are given in (2 – 4), with Kn defined in (5).

∂y(k)
∂α

=

k−1∑
n=0

[
y(k−1−n) ·Kn

]
(2)

∂y(k)
∂β

=

k−2∑
n=0

[
y(k−2−n) ·Kn

]
(3)

∂y(k)
∂x(k−n)

= GKn (4)

Kn =


αKn−1 + βKn−2 if n > 0

1 if n = 0

0 if n < 0

(5)

The gradient explosion is caused by the recurrence in Kn. The
analysis of (5) reveals that a sufficient condition to prevent gradient
explosion is that all the poles of the model have a modulus lower than
one (i.e. the modelled system stability implies the stability of the
gradient). We can express the model in polar notation if we assume
that we are only targeting complex conjugate poles

y(k) = Gx(k) + 2ρ cos(φ) y(k−1) − ρ2 y(k−2) (6)

with ρ the modulus and φ the phase of the poles. This assumption
is not a limitation for muscle modelling, as muscle responses tend
to behave as under-damped or critically damped systems [14]. This,
in turn, allows to express the stability constraint as (7), which can
be imposed by using a compressing transformation [5] as sigmoid
(8). The cosine of the pole angle can also be transformed to use the
whole parameter space by defining c in (9).

|ρ| ≤ 1 (7)

ρ = σ(p) (8)

cos(φ) = tanh(c) (9)

The reformulation of the system

y(k) = Gx(k) + 2 σ(p) tanh(c) y(k−1) − σ2(p) y(k−2) (10)

is used to implement trainable muscle models integrated in neural
networks, and prevents gradient explosion issues.

2.2. Network architecture

We integrate the trainable muscle models into the existing sys-
tem, which we will refer to as atom model, by replacing the post-
processing step with a new muscle models layer (Figure 1). In
contrast to the existing system, the command signals are not split
into separate position and amplitude channels. The former position
output signal is therefore removed from the system. The amplitude
outputs become the command inputs for the new muscle models
layer. The Voiced/Unvoiced (V/UV) prediction output remains
unchanged as it is independent from the post-processing.

The new muscle models layer has one recurrent unit ϕi per GCR
muscle (Figure 3). Each output is multiplied by a gain that normal-
izes the L2 norm of the impulse response of the filters (the linearity
of the models implies that the gains can be applied on the input or
the output signals equally). The normalization allows an easier in-
terpretation of the command signals, and is consistent with the atom
model that also uses normalized muscle responses. Moreover, nor-
malization gains help balance the impact of the gradients on the dif-
ferent muscle models. Trainable gains could create dominant filters
that would receive higher gradients, resulting in uneven convergence
speed across the muscle models.

The gain that normalizes the impulse response of a filter depends
only on its poles. This relationship can be computed analytically.
However, as the exact expressions are difficult and computationally
heavy, we use a numerical approximation.

The final LF0 contour is given by summing up the normalized
filter responses and adding a trainable bias, which compensates for
the non-zero mean of LF0. We believe that a trainable bias, which
can depend on a global speaker ID input, is more flexible than train-
ing on a normalized LF0 target. Compared to the atom model, the
bias compensates the main shift of the phrase component.

Instead of starting from a random initialization point we can start
with a pre-trained atom model. Nevertheless, the muscle models
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Fig. 3: Muscle models layer. Each muscle model ϕi is associated to
a normalization gainGi. All the outputs are summed and the phrase
bias B is added to reconstruct LF0.

used in the former architecture are gamma-shaped atoms whose im-
pulse response is

fK,θ(t) =
1

θK Γ(K)
tK−1 e−t/θ for t ≥ 0 (11)

with K and θ the shape and scale of the atom and t the continuous
time variable. To use the previous muscle parameters a relationship
between gamma atoms and discrete linear filters is required. Setting
K = 2 and using an impulse-invariant transformation [15] to dis-
cretize (11) relates the pole modulus of discrete linear filters to the
scale of gamma atoms

ρ = exp

(
−Ts
θ

)
(12)

with Ts the sampling period. Since the filters are normalized, the
gain relationship can be ignored.

3. EXPERIMENTS

In running experiments, we want to validate the assumption that
the proposed E2E system can reproduce the behaviour of the GCR
model, and generate the phrase contribution. We are also testing the
hypothesis that the fixed muscle parameters used in the atom model
are not optimal for intonation generation by a neural network, and
that trainable models will converge to values giving better perfor-
mance matching the quality of a strong baseline.

3.1. Experimental setup

We use a subset of the 2008 Blizzard Challenge speech database [16]
(about 5.7 hours) to test our model. 5% (17 minutes) are set aside
for test and evaluation set respectively. The phone sequences are ex-
tracted from text and force-aligned by context-independent HMMs
using Festival [17]. The inputs are 425 text-derived binary and nu-
merical features normalized to [0.01, 0.99].

The WORLD vocoder [18] (D4C edition [19]) is used for the
extraction of LF0, 60-dimensional MGC, and one Band Aperiodic-
ity (BAP) at 5 ms frame step. LF0 is interpolated before training
and a binary V/UV flag is used to capture voicing information. For
the baseline system dynamic features are computed as well. We use
a set of nine muscles for the GCR, initialized with gamma scales
θ ∈ {0.03, 0.045, ..., 0.15}, approximating the ones used in previ-
ous research [11].

3.2. Network Topologies and Training

We use a state-of-the-art acoustic baseline system consisting of
two feed-forward RELU layers of 1024 nodes, three bi-directional
LSTMs with 512 nodes each, and a linear output layer with 187
nodes (features + ∆ + ∆∆). The model is trained for 35 epochs
with a learning rate (LR) of 0.002.

The E2E system is initialized with a pre-trained atom model,
which uses the same topology and training as described in our pre-
vious work [3]. At first the E2E model is trained for 50 epochs (LR
of 0.001), without the phrase bias, on LF0 from which the phrase
contribution is removed. It is then trained with phrase bias on non-
normalized LF0 for another 50 epochs (LR of 0.0006). Note that
training the system without initialization converges but deteriorates
the reconstruction performance.

The loss is computed by summing the Mean-Squared-Error
(MSE) of LF0 on the voiced frames and the MSE of the V/UV
output weighted by 0.3. In order to generate spiky command signals
that fit the behaviour of an GCR model, we apply a temporal L1
constraint [20] on the outputs of the atom model weighted by 0.3.
Without this penalization the generated command signals are not
sparse and cannot be assimilated to GCR spikes.

The LR is reduced using a plateau scheduler with a patience
of five, a relative threshold of 0.001 and a factor of 0.3. All the
networks are trained using Adam [21] with β1 = 0.9, β2 = 0.999,
ε = 10−8.

3.3. Objective Scores

The performance of the models is objectively measured by the Root-
Mean-Squared-Error (RMSE) of F0 on all the target voiced frames
and the V/UV error rate. Table 1 shows that the proposed E2E sys-
tem significantly improves the performance on the atom model, and
the obtained objective performance closely matches the score of the
strong baseline system. The signals generated by the trained sys-
tem are plotted in Figure 4, which shows the ability of the model to
generate spiky signals and to synthesize the phrase component. For
the tested E2E system the muscle parameters converge to the values
θ ∈ {0.01, 0.019, 0.02, 0.021, 0.037, 0.042, 0.145} which are dif-
ferent from the initial ones. This validates our hypothesis that the
fixed values used in the atom model are not optimal for this task.
Whether the parameters always converge to the same values remains
future research.

Table 1: Objective scores

Model F0 RMSE V/UV error
Baseline 21.3 Hz 10.4 %

Atom 28.8 Hz 14.9 %

E2E 22.3 Hz 10.7 %

3.4. Subjective Measurements

We synthesize the samples with the WORLD vocoder using the orig-
inal durations, MGCs, and BAPs; only the impact of LF0 is mea-
sured. For the baseline LF0 is improved by maximum likelihood pa-
rameter generation [22]. The naturalness of the synthesized speech
is evaluated through a MUSHRA test conducted using the BeaqleJS
toolkit [23]. It compares our model (E2E) to the previous system
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Fig. 4: Signals generated by the E2E model. From top to bottom: 1: Command signals generated by the RNN, which can be assimilated the
spikes of a GCR. 2: Muscle model responses, where the slow phrase component is clearly visible (dash-dotted line). 3: LF0 reconstruction
(dash-dotted) and original (solid). The striped regions represent unvoiced frames.

(atom), an anchor (only the phrase component), the baseline, and the
speech synthesized using the original LF0 (reference). 20 random
samples from the evaluation set have been selected for evaluation by
42 fluent English speakers. Each of them was asked to rate 5 random
samples of this subset on a scale from 0 to 100, focusing on prosody
only and ignoring minor artefacts.

A two-tailed paired t-test on the individual ratings of the baseline
and E2E system gives p = 0.746 > 0.1, proving that the proposed
model achieves the same perceived quality as a strong baseline sys-
tem. The quality of the atom model is worse, with the p-value of
E2E–Atom being p = 0.0002 < 0.1. This is expected because the
evaluation set contains multi-phrase samples, while the atom model
can correctly model single-phrase samples only. Thus, the proposed
model achieves a better performance on a more complex task.

4. CONCLUSIONS

We have shown that an E2E neural network with embedded train-
able second-order linear all-pole digital filters can generate natu-
ral sounding intonation, provided that suitable stability conditions
are imposed. The temporal L1 constraint allows to produce spiky
command signals to drive muscle responses, thus reproducing the
behaviour of a GCR model. Taking advantage of the flexibility of
E2E networks, the system can also generate the phrase component
in LF0. The objective and subjective results of this model closely
match those of a strong baseline.

We noticed a clustering effect in the muscle models, which can
be further investigated in future work. Furthermore, the obtained
muscle parameters and the shape of the command signals allow the
psycho-linguistic analysis of the model behaviour. The system capa-
bilities to produce and transfer affect also need to be investigated for
exploitation in emotional speech synthesis.
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Fig. 5: Subjective score of MUSHRA intonation test. Medians as
lines, sample averages as triangles, outliers as circles.

Reproducibility: The source code used to train the model and
measure its performance is available at https://github.com/
idiap/IdiapTTS.
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