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Miraç Göksu Öztürk,1,3 Okan Ulusoy,1,4 Cenk Demiroglu2,3,4
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ABSTRACT

Deep neural networks (DNNs) have been successfully de-
ployed for acoustic modelling in statistical parametric speech
synthesis (SPSS) systems. Moreover, DNN-based postfil-
ters (PF) have also been shown to outperform conventional
postfilters that are widely used in SPSS systems for increas-
ing the quality of synthesized speech. However, existing
DNN-based postfilters are trained with speaker-dependent
databases. Given that SPSS systems can rapidly adapt to
new speakers from generic models, there is a need for DNN-
based postfilters that can adapt to new speakers with minimal
adaptation data. Here, we compare DNN-, RNN-, and CNN-
based postfilters together with adversarial (GAN) training and
cluster-based initialization (CI) for rapid adaptation. Results
indicate that the feedforward (FF) DNN, together with GAN
and CI, significantly outperforms the other recently proposed
postfilters.

Index Terms— Speaker adaptation, speech synthesis,
postfilter, deep learning

1. INTRODUCTION

Statistical parametric speech synthesis (SPSS) approach has
been gaining increasing popularity in recent years in part be-
cause of the advancements made possible with the use of deep
neural networks (DNNs) for acoustic modelling [1, 2, 3]. In
addition to better modelling of speech parameters [1], DNNs
also allow direct generation of the waveform without a para-
metric vocoder [4, 5].

Even though the waveform generation approach produces
high-quality speech, it requires a substantial amount of data
from a single speaker. Parametric methods, however, can
work with only a few hours of training data. Still, they gener-
ate muffled speech because of the oversmoothing of parame-
ter trajectories, which causes major quality degradations. To
address that issue, methods such as global variance (GV) im-
provements and postfiltering (PF) that enhances the spectra
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generated with the line spectral frequency (LSF) [6] and mel-
generalized cepstrum (MGC) parameters [6] have been pro-
posed with limited success.

Recently, DNN-based postfiltering methods emerged that
are shown to outperform the more conventional postfilters. In
[7], two deep belief networks are cascaded with a bidirec-
tional associative memory (BAM) and trained generatively
to map synthesized spectral envelopes to natural spectral en-
velopes. The same DNN architecture in [7] was also trained
to map synthesized mel-cepstral (MCEP) features to natural
MCEP features. Even though the MCEP-based approach per-
formed as good as the conventional methods, namely the GV
and the modulation spectrum postfilter, the spectral envelope
based mapping significantly outperformed them.

Similar to [7], in [8], a DNN is trained to estimate the
power spectrum of natural speech from the vocoded wave-
form and that approach outperformed the baseline system
without any postfilter. The algorithm in [7] and [8] rely on
learning a mapping between vocoded and natural spectra. In
[9], an auto-encoder is trained only with the natural speech
signal and used as a postfilter for enhancing the vocoded
speech spectrum. Thus, the postfilter in [9] is independent of
the speech parameters or the parameter generation algorithm
used during training. In [10], generative adversarial networks
(GAN) were used to train a convolutional neural network
(CNN) that generates the residual between the synthetic and
natural spectral textures. A recurrent neural network (RNN)-
based postfilter is proposed in [11].

All previously proposed DNN-based postfilters were
trained for speaker-dependent systems where large amount
of data is available for a single speaker. However, a major
advantage of the SPSS approach is its ability to adapt to dif-
ferent speakers with limited amounts of data. For example,
in [12], one-shot learning with a speech chain framework
was applied for an unseen speaker to improve synthesis per-
formance. Similarly, adaptation using speaker-embeddings
[13, 14] and transfer learning methods [15] have been used
for adaptation with a few seconds of data.

To retain the rapid adaptation advantage of SPSS, post-
filters that perform well with few shots of data is needed.
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Thus, here, we investigate DNN-based postfilter architec-
tures that can be trained with a speaker-independent database
and adapted to target speakers with only a few adaptation
utterances. Three architectures are compared: Feedforward
(FF), CNN, and RNN. Networks are trained with and without
the GAN approach. Moreover, a cluster-based initialization
method is used where the postfilter is initialized with a model
that is trained with speakers similar to the target speaker.

2. DNN ARCHITECTURES

Our goal is to construct a speaker-adapted text-to-speech sys-
tem (i.e. to generate acoustic parameters from text features)
with minimal adaptation data. During model training, we
first train a speaker-independent acoustic model that gener-
ates acoustic features from text features and i-vectors. Then,
those features are smoothed using maximum-likelihood pa-
rameter generation (MLPG) algorithm [16]. Output of the
MLPG algorithm is enhanced using a speaker-adaptive post-
filters described below.

2.1. Postfilters

Let c = [ĉT ,∆ĉT ,∆2ĉT ]T be the output vector of the base-
line network model where ĉT ,∆ĉT ,∆2ĉT are the cepstral,
delta-cepstral and delta-delta-cepstral coefficients, respec-
tively. Additionally, let pn and st be the 1-of-k vectors
representing, respectively, the phoneme and the state infor-
mation of an utterance. In the following sections, we used
T,M,P, S to denote the number of frames in an utterance,
the number of MGC coefficients, the size of pn vector, and
the size of st vector, respectively.

Feedforward Network: The feedforward (FF) postfilter
is a fully-connected model with one hidden layer having 64
units as shown in Figure 1b. Since the PF structure does not
include any recurrent layer, the context information is pro-
vided to the PF model by giving the previous, ci−1, and the
next frame’s, ci+1, feature vectors together with the current
feature vector ci, where the subscript i indicates the frame
number. In addition, the PF model also takes pni and sti as
inputs, resulting in an (3M + P + S) dimensional input vec-
tor Ii = [cTi−1, c

T
i , c

T
i+1, pn

T
i , st

T
i ]T whereas the correspond-

ing output vector is M dimensional cpfi . There are approxi-
mately 21k trainable parameters in this model.

RNN network: We used a fully connected layer on top of
a long short-term memory (LSTM) shown in Figure 1c to en-
hance the MGC features. A T × (M +P +S) matrix includ-
ing state, phoneme and MGC features is used sequentially,
one frame at a time, at the input producing an M -dimensional
vector at the output for each input frame. There are approxi-
mately 39k trainable parameters in this model.

CNN network: We used the convolutional neural net-
work (CNN) shown in Figure 1a to enhance the spectral tex-
ture of the MGC features. Batch normalization layers fol-

(a)

(b)

(c)

Fig. 1: (a) CNN-based postfilter, (b) Feedforward postfilter,
(c) RNN-based postfilter

lowed by ReLU nonlinearities are used between the convo-
lutional layers. Different from DNN-based and RNN-based
postfilters, state and phoneme features are not used as inputs.
A T×M feature matrix is used at the input producing a recon-
structed T ×M matrix at the output. There are approximately
132k trainable parameters in this model.

3. ADAPTATION

3.1. Cluster-based Initialization

Because adaptation is performed with very limited data, the
optimization algorithm can quickly fall into a nearby local op-
tima with low chances of escaping it. Thus, good initialization
is important to improve the performance. We hypothesized
that a PF model that is pre-adapted with the speakers in the
training set whose voice characteristics are similar to a target
speaker can be a better initialization for the target speaker’s
PF model than a more general initialization. We clustered
the reference speakers into 5 groups using i-vectors with the
k-means method where the number of clusters was chosen
based on the initial experiments. Then, for each cluster, one
model is generated by adapting the SI model with the utter-
ances of the speakers belonging to that cluster. While adapt-
ing for a target speaker, the model is initialized with one of
these 5 pre-trained models that is closest to the target speaker.
Euclidean distance of each cluster’s mean vector to the target
speaker’s i-vector is used as the selection criterion.

3.2. Adversarial Training

When GAN is not used, the PF is trained using the standard
Mean Squared Error (MSE) loss as below:

LMSE(ŷ, y) =
1

T

T∑
t=0

(yi − ŷi)
2 (1)
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where ŷi is a vector prediction for the time step i and yi vector
is the target parameters for the same time step. In the adver-
sarial approach, in addition to the MSE loss, a binary cross
entropy loss function

LBCE(ŷ, y) =
1

T

T∑
t=0

−(yilog(ŷi)+(1−yi)log(1−ŷi)) (2)

is used where ŷi is a scalar prediction for the time step i and
ŷi ∈ {x ∈ R | 0 < x < 1} while yi is the target value for
the time step i and yi ∈ (0, 1) denoting the label as either
fake(prediction) or real(natural).

The loss function with the adverserial approach is

LPF = LMSE(cpf , cnat) +
ELMSE

ELBCE

LBCE(apcpf ,1) (3)

where ELMSE
and ELBCE

are the expected values of MSE
and binary cross entropy losses. apcpf is the prediction of the
adversarial network when its input is the parameters gener-
ated by the PF network and 1 is a vector of ones that has the
same length as apcpf . Thus, the loss function increasingly
penalizes cpf if it diverges from the natural parameters cnat
while trying to minimize the MSE.

ELMSE
/ELBCE

can be considered as the scaling factor
to boost the effect of LBCE since ELMSE

>> ELBCE
and

the gradients from LMSE and LBCE differ significantly in
magnitude.

Adversarial network training uses the following loss func-
tions:

L1
ADV = LBCE(apcpf ,0) (4)

L2
ADV = LBCE(apcnat,1) (5)

where apcpf and apcnat are the predictions for the generated
parameters of the PF model and the natural parameters re-
spectively. 0 and 1 are the vectors of zero and one. The
decision to pick either L1

ADV or L2
ADV for the weight update

is made in a balanced and mutually exclusive manner as car-
ried out typically in the training process of a GAN model’s
discriminator component.

4. EXPERIMENTS

4.1. Experimental setup

All experiments were conducted on the Wall Street Journal
(WSJ) speech database. 154 features including 25 Mel-
Generalized Cepstrum Coefficients (MGC), 1 log of funda-
mental frequency (LF0) and 25 Band Aperiodicity (BAP)
together with their delta and delta-delta features were ex-
tracted from speech data at a sampling rate of 16 KHz and
5 msec frame rate. Additionally, a voiced/unvoiced binary
feature was appended to represent the voicing information.

A 5-state HMM model was applied to model and align
phonemes by using HTS 2.3 speech synthesis tool [17].

Among the total of 156 speakers, 135 of them were used for
training, whereas the test and adaptation processes were per-
formed on the remaining 21 target speakers’ data. Adaptation
was performed with 5, 10, and 15 seconds of data.

The acoustic model is a Deep Neural Network (DNN)
model with three 512-node feed-forward (FF) layers followed
by one 256-node Long-Short Term Memory (LSTM) layer
and one 154-node FF output layer. The model is trained with
approximately 5 hours of balanced speech data taken from
135 male speakers. The DNN model is trained for 50 epochs
and Adam optimizer [18]. For speaker adaptation, i-vectors
[19] augmented with the text features are used as input to the
DNN.

In listening tests, AB test is used for comparison of speech
quality whereas ABX test is used for comparison of speaker
similarity. 1

Table 1: Mel cepstral distortion (MCD) scores of the speaker-
independent postfilters with and without cluster-based initial-
ization (CI) are shown. Scores for tandem use of FF- and
RNN-based postfilters with the CNN-based postfilter are also
shown.

POSTFILTER MCD
SI-Baseline 5.19
FF-SI-PF 5.89
RNN-SI-PF 5.16
CNN-SI-PF 5.45
FF-SI-PF-CI 5.60
RNN-SI-PF-CI 5.23
CNN-SI-PF-CI 5.47
FF-SI-PF on CNN-SI-PF 6.15
RNN-SI-PF on CNN-SI-PF 5.34

4.2. Results and Discussion

Performance of the Speaker-Independent Postfilters:
MCD scores of all postfilters without any adaptation are
shown in Table 1. RNN-based postfilter performed the best
among all three postfilters. Cluster-based initialization (CI)
of the network, without any adaptation, did not significantly
affect the performance of RNN and CNN. However, the FF
system is significantly improved with the CI approach. Be-
cause the FF system can adapt with significantly less data
than the RNN and CNN methods, as discussed in more detail
below, the CI approach was successful with the FF-based
postfilter but not with the others. Still, FF-based postfilter
performed worse than the other two postfilters in the AB and
ABX tests with and without CI.

Both RNN and CNN postfilters significantly improved
speech quality in the listening tests as shown in Figure 2.

1Audio samples can be found at https://mgoksu.github.io/icassp19/index.html
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Performance-wise, two methods were not found to be signifi-
cantly different as shown in the same figure. In our listening
tests, we also found that the perceived speaker similarity also
improved with those two postfilters, even though no speaker
adaptation was performed, thanks to the improvement in
quality with postfiltering.

Table 2: Mel cepstral distortion (MCD) scores of the speaker-
adapted postfilters with 5, 10, and 15 seconds of adaptation
data.

POSTFILTER 5 sec 10 sec 15 sec
FF 5.74 5.68 5.65
FF+CI 5.45 5.35 5.31
FF+CI+ADV 5.40 5.16 5.11
FF on CNN-PF 5.69 5.60 5.52
RNN 5.15 5.14 5.15
RNN+CI 5.21 5.20 5.20
RNN+CI+ADV 5.35 5.15 5.07
RNN on CNN-PF 5.30 5.31 5.31
CNN 5.45 5.31 5.27
CNN+CI 5.45 5.29 5.25
CNN+CI+ADV 7.24 7.01 6.99

Performance of the Speaker-Adapted Postfilters: The
CNN-based system could not adapt to the target speakers even
when 15 seconds of adaptation data was used as shown in Ta-
ble 2. We found that not only the speech quality, but also
the speaker similarity significantly degraded after adaptation.
Because the CNN system is learning to map large spectral tex-
tures, attempting to adapt it with only a few shots of data had
a detrimental effect because of the large number of parame-
ters that need to be adapted. Still, because it performs as well
as the RNN postfilter for the SI case, we attempted to use it in
tandem with the RNN-based and FF-based postfilters. How-
ever, that approach slighly degraded the performance of the
two postfilters as shown in Table 2.

Similar to CNN, RNN-based postfilter could not adapt to
new speakers with limited data. However, performance did
not degrade with adaptation. FF-based postfilter was the most
effective at adaptation as shown in Table 2.

Cluster-based initialization significantly improved the
adaptation capability of the FF postfilter whereas it slightly
degraded the performance of the RNN-based postfilter. Both
RNN and RNN+CI system performances remain almost con-
stantly for all adaptation data sizes. This is because RNN
system cannot adapt with limited data regardless of the ini-
tialization.

Adverserial training improved the performance of the FF-
based postfilter whereas it degraded the performance of the
CNN-based postfilter as shown in Table 2. Similarly, adverse-
rial training degraded the RNN-based postfilter except for the
15sec case.

ABX speaker similarity test results are shown in Figure 3

Fig. 2: In the top figure, SI-baseline system (A) is compared
with the RNN-SI postfilter (B) using the AB test. Significance
(p-value) is 0.01. In the middle figure, SI-baseline system (A)
is compared with the RNN-SI postfilter (B) using the AB test.
Significance (p-value) is 0.01. In the bottom figure, RNN-
SI posttfilter (A) is compared with the CNN-SI postfilter (B)
using the AB test. Significance (p-value) is 0.55.

for the comparison of RNN and FF+CI+ADV postfilters.
FF+CI+ADV postfilter clearly outperformed the RNN-based
postfilter in all cases. Similar results were obtained for the
AB quality tests even though they are not presented here due
to space constraints. Thus, we conclude that in a speaker-
adaptive postfilter setting with a few seconds of adaptation
data, the FF postfilter together with CI and adverserial train-
ing significantly outperforms the CNN- and RNN-based post-
filters.

Fig. 3: RNN postfilter (A) is compared with the FF+CI+ADV
postfilter (B) using the ABX test. Results are shown when the
adaptation data is 5 sec (top figure), 10 sec (middle figure),
15 sec (bottom figure). Significance (p-value) of the 5 and 10
sec cases are 0.01 whereas significance of the 15 sec case is
0.03.
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