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ABSTRACT
This paper presents a spectral enhancement method to improve
the quality of speech reconstructed by neural waveform generators
with low-bit quantization. At training stage, this method builds
a multiple-target DNN, which predicts log amplitude spectra of
natural high-bit waveforms together with the amplitude ratios be-
tween natural and distorted spectra. Log amplitude spectra of the
waveforms reconstructed by low-bit neural waveform generators are
adopted as model input. At generation stage, the enhanced amplitude
spectra are obtained by an ensemble decoding strategy, and are
further combined with the phase spectra of low-bit waveforms to
produce the final waveforms by inverse STFT. In our experiments on
WaveRNN vocoders, an 8-bit WaveRNN with spectral enhancement
outperforms a 16-bit counterpart with the same model complexity
in terms of the quality of reconstructed waveforms. Besides,
the proposed spectral enhancement method can also help an 8-
bit WaveRNN with reduced model complexity to achieve similar
subjective performance with a conventional 16-bit WaveRNN.

Index Terms— spectral enhancement, DNN, neural waveform
generator, WaveRNN, multiple-target learning

1. INTRODUCTION

Recently, neural network-based speech waveform generators, such
as WaveNet [1] and SampleRNN [2], have been proposed and
demonstrated impressive performance in many fields of speech
generation [3, 4, 5]. In these methods, the distribution of each
waveform sample conditioned on previous samples and additional
conditions was represented using convolutional neural network-
s (CNNs) or recurrent neural networks (RNNs). WaveNet and
SampleRNN-based neural vocoders [3, 6, 7, 8], which reconstruct
speech waveforms from acoustic features, have been proposed and
successfully applied to voice conversion [4, 9] and text-to-speech
(TTS) synthesis [10]. Previous studies showed that these neural
vocoders outperformed conventional source-filter vocoders in terms
of the naturalness of reconstructed speech waveforms.

Original WaveNet and SampleRNN models represented wave-
form samples as discrete symbols. Although µ-law quantization
strategy was applied, the neural waveform generators with low
quantization bits (e.g. 8-bit or 10-bit) always suffered from the
influence of perceptible quantization errors. In order to achieve 16-
bit quantization of speech waveforms, the parallel WaveNet model
[11] was proposed, which adopted continuous probability density
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distribution to describe the amplitude of waveforms. Later, the
WaveRNN model [12] was also proposed, which generated 16-bit
waveforms by splitting the RNN state into two parts and predicting
the 8 coarse bits and the 8 fine bits respectively. In this paper, we
investigate another approach to improve the performance of low-
bit neural waveform generators, which is alleviating the effects of
quantization noise by neural network-based spectral enhancement.

In recent years, various neural network-based speech enhance-
ment methods [13, 14, 15, 16, 17] have been developed to improve
the intelligibility and quality of noisy speech signals. Compared to
conventional speech enhancement methods such as spectral subtrac-
tion [18] and Wiener filtering [19], neural network-based methods
can suppress non-stationary noise and model the correlation between
signal and noise effectively. In these methods, a deep neural
network (DNN) or recurrent neural network (RNN) is usually built
to map the the log-power spectra (LPS) of noisy speech toward clean
ones. Some improving strategies have also been proposed, such
as multiple-target training [15] which added the prediction of ideal
ratio masks (IRM) into model training. Applying such enhancement
methods to reduce the noise carried by the output of low-bit neural
waveform generators has not yet been thoroughly investigated.

Therefore, this paper presents a spectral enhancement (SE)
method for low-bit neural waveform generators. Inspired by the
multiple-target learning for speech enhancement [15], a DNN is
built in our method, which predicts log amplitude spectra of natural
high-bit waveforms together with the amplitude ratios between
natural and distorted spectra simultaneously. WaveRNN vocoders
are used as neural waveform generators in our implementation.
Experimental results show that the waveforms reconstructed by an
8-bit WaveRNN after SE outperformed the waveforms reconstructed
by a 16-bit WaveRNN with the same model complexity. Besides,
the proposed SE method boosted an 8-bit WaveRNN with reduced
model complexity to achieve similar subjective performance with a
conventional 16-bit WaveRNN.

This paper is organized as follows. In Section 2, we briefly
review the WaveRNN model and neural network-based speech
enhancement methods. In Section 3, we describe the details of
our proposed methods. Section 4 reports our experimental results.
Conclusions are given in Section 5.

2. PREVIOUS WORK

2.1. WaveRNN

WaveRNN [12] is a recently proposed neural waveform generator
which can reconstruct 16-bit waveforms. It splits the state of the
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Fig. 1. The flowchart of our proposed spectral enhancement (SE) method for low-bit neural waveform generators. Here, LAS and AR stand
for log amplitude spectra and amplitude ratios respectively.

RNN in two parts that predict the 8 coarse (or more significant) bits
ct and the 8 fine (or least significant) bits ft of the 16-bit waveform
samples respectively. The prediction of the 8 fine bits is conditioned
on the 8 coarse bits. The overall calculations are as follows.

xt = [ct−1,ft−1, ct], (1)
ut = σ(Ruht−1 + I∗

uxt + bu), (2)
rt = σ(Rrht−1 + I∗

rxt + br), (3)
et = τ(rt � (Reht−1) + I∗

ext + br), (4)
ht = ut � ht−1 + (1− ut)� et, (5)
yc,yf = split(ht), (6)
P (ct) = softmax(O2relu(O1yc)), (7)
P (ft) = softmax(O4relu(O3yf )), (8)

where ∗ indicates a masked matrix whereby the last coarse input ct
is only connected to the fine part of the states {ut, rt, et,ht} and
thus only affects the fine output yf . σ and τ are the sigmoid and
hyperbolic tangent functions respectively. Finally, 8 coarse bits ct
and 8 fine bits ft sampled from probability distribution P (ct) and
P (ft) respectively are concatenated to obtain 16-bit samples.

2.2. Multiple-target neural network-based speech enhancement

In the neural network-based speech enhancement method with
multiple-target learning [15], noisy waveforms y are formed by the
addition of clean waveforms x and noise signals n. The ideal ratio
mask (IRM) is defined as

IRM =
SP
x

SP
x + SP

n
, (9)

where SP
x = (SA

x )2 and SP
n = (SA

n )2 are the power spectra of x
and n respectively and SA denotes amplitude spectra.

The speech enhancement model is actually a neural network
(e.g., DNN or RNN) with two outputs. The model predicts the log
power spectra (LPS) of clean waveforms x as well as IRMs from
the LPS of noisy waveforms y. At the training stage, the sum of the
mean square errors (MSE) of these two outputs is minimized. At the
enhancement stage, the predicted clean LPS and IRMs are combined
via ensemble decoding strategy (i.e., a simple average operation in
the LPS domain) [15] as

log S̃P
x =

1

2
(log ŜP

x + log ˆIRM + logSP
y ), (10)

where log ŜP
x and ˆIRM are the predicted clean LPS and IRM

respectively. log S̃P
x is called ensemble clean LPS. Finally, the

enhanced waveforms are reconstructed by applying inverse short-
time Fourier transform (STFT) to the combination of the amplitude
spectra calculated from log S̃P

x and the phase spectra of y.

3. PROPOSED METHOD

Inspired by the abovementioned speech enhancement method, this
paper designs a spectral enhancement (SE) method for low-bit neural
waveform generators. The flowchart of this method is illustrated
in Fig. 1. Here, a low-bit WaveRNN vocoder which reconstructs
speech waveforms from acoustic features is used as the neural
waveform generator. It should be noticed that this framework is
also applicable to other neural waveform generators. At the training
stage, natural waveforms as well as acoustic features extracted
from them are firstly used to train a low-bit WaveRNN model.
Then, the built WaveRNN model generates low-bit waveforms using
acoustic features of the training corpus as input in order to prepare
training data for the SE model. Finally, an SE model is trained
with the features extracted by STFT from the training data. At
the enhancement stage, test acoustic features are first fed into the
WaveRNN model to reconstruct low-bit waveforms. Then, the SE
model is employed to enhance the amplitude spectra of the low-bit
waveforms and to produce the final waveforms. The details of our
proposed method are introduced as follows.

3.1. DNN-based spectral enhancement

Let x and y denote as the natural high-bit waveforms and the low-bit
waveforms reconstructed by a WaveRNN vocoder respectively. The
multiple learning strategy introduced in Section 2.2 is followed to
build our DNN model. Different from the speech enhancement task,
we can not create noisy speech by adding pre-recorded noise signals
to clean speech and assume noise and signal are independent in this
task. Therefore, log amplitude spectra (LAS) and amplitude ratios
(AR) are used as the targets of DNN prediction. Here, the AR for
each frame is designed as

AR =
SA
x

SA
x + |SA

y − SA
x |
. (11)

The model structure is shown in Fig. 2. Model input is the LAS
of the low-bit waveforms reconstructed by a WaveRNN vocoder (i.e.
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Fig. 2. The structure of the multiple-target DNN model for spectral
enhancement.

noisy LAS in Fig. 1) and the output is the LAS of natural high-bit
waveforms (i.e. clean LAS in Fig. 1 ) as well as AR.

3.2. SE model training and generation

At the training stage, noisy LAS, clean LAS and ARs obtained by
STFT analysis on reconstructed low-bit waveforms and natural high-
bit waveforms are used to train the SE model. The training criterion
is to minimize the sum of the MSE between predicted and real
clean LAS and the MSE between predicted and real ARs. At the
generation stage, the noisy LAS obtained by STFT is sent into the
well trained SE model to predict clean LAS and ARs. We assume
that SA

y ≥ SA
x and the ensemble decoding strategy Eq. (10) should

be changed to

log S̃A
x =

1

2
(log ŜA

x + log ÂR+ logSA
y ), (12)

where log ŜA
x and ÂR are the predicted clean LAS and AR respec-

tively. Then, the ensemble clean LAS log S̃A
x combine the phase

spectra of the reconstructed low-bit waveforms to form complex
STFT spectra. Finally, the enhanced waveforms are produced by
applying inverse STFT to the complex spectra.

4. EXPERIMENTS

4.1. Experimental conditions

A Chinese speech synthesis corpus with 1000 utterances from a
female speaker was used in our experiments. The waveforms had
16kHz sampling rate and 16bits resolution. For both WaveRNN and
SE models, we chose 800 and 100 utterances to construct the training
set and validation set respectively, and the remaining 100 utterances
were used as the test set.

When building WaveRNN models, our implementation was
slightly different from the original WaveRNN model in [12]. First
we mapped the one-hot representations of coarse and fine bits to
256-dimensional real-valued vectors by a trainable embedding layer
rather than using the scalar form of waveform samples. Second,
a matrix sharing strategy for calculating Eq. (2)-(4) was adopted
which shared the coarse part and fine part of all matrices I . Finally,
upsampled acoustic features were combined with the embedded
coarse and fine samples to form the input of WaveRNN vocoders.
The natural acoustic features were extracted by STRAIGHT and
the window size was 25ms and the window shift was 5ms. The
acoustic features at each frame were 43-dimensional including
40-dimensional mel-cepstra, an energy, an F0 and a V/UV flag.

Table 1. Comparison of PESQ, SNR and LSD among five systems
on the test set.

System A B C D E
PESQ 3.0206 3.0070 3.271 3.4474 3.1022

SNR(dB) 4.6417 4.1049 4.8275 5.1118 4.6607
LSD(dB) 7.7801 10.335 7.7071 7.9015 8.1491

Table 2. Comparison of FLOPs (million) for generating one sample
among three WaveRNN models.

System A/C B/D E
FLOPs 26.42 24.82 7.835

Truncated back propagation through time (TBPTT) algorithm was
employed to improve the efficiency of training WaveRNN models
and the truncated length was set to 480. The coarse and fine bits at
each time step were predicted by randomly sampling the probability
distributions shown as Eq. (7) and (8).

SE models were built following the method introduced in
Section 3. When extracting LAS, the window size and window
shift of STFT were 32ms and 16ms respectively and the FFT point
number was 512. The noisy LAS at current frame along with 5
previous frames were concatenated as model input. There were two
hidden layers with 2048 nodes per layer, and two 257-dimensional
output layers which predcited clean LAS and ARs respectively. An
Adam optimizer [20] was used to update the parameters for both
WaveRNN and SE models. All experiments were conducted on a
single Tesla K40 GPU using TensorFlow framework [21].

Five systems were compared in our experiments. The descrip-
tions of these systems are as follows. The numbers of quantization
bits in coarse and fine parts of all WaveRNN models are equal.

• A.WaveRNN-16bit-1024: A WaveRNN model having one
hidden layer of 1024 nodes and generating 16-bit waveform
samples. The waveform samples were quantized to discrete
values by 16-bit linear quantization.

• B.WaveRNN-8bit-1024: A WaveRNN model having one
hidden layer of 1024 nodes and generating 8-bit waveform
samples. The waveform samples were quantized to discrete
values by 8-bit µ-law quantization [22].

• C.WaveRNN-16bit-1024-SE: Based on system A, an SE
model was built to enhance its reconstructed waveforms.

• D.WaveRNN-8bit-1024-SE: Based on system B, an SE model
was built to enhance its reconstructed waveforms.

• E.WaveRNN-8bit-512-SE: Based on system D, this system
reduced the number of hidden nodes in WaveRNN to 512.

4.2. Objective evaluation

In order to compare the quality of speech generated by different
systems, three metrics were adopted here, including the score of
Perceptual Evaluation of Speech Quality (PESQ) for wideband
speech (ITU-T P.862.2) [23], signal-to-noise ratio (SNR) which
reflected the distortion of waveforms, and log spectral distance
(LSD) which reflected the distortion in frequency domain and was
used in our previous work [5].

The average PESQ, SNR and LSD values calculated on the
test set speech generated by the five systems are listed in Table 1.
For better comparing system A, B and D, we also draw example
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Fig. 3. The spectrograms of natural clean speech and speech
generated by system A, B and D for a sentence in the test set.

Table 3. Average preference scores (%) on speech quality among
different systems, where N/P stands for “no preference” and p
denotes the p-value of a t-test between two systems.

A C D E N/P p
A vs D 19.0 – 44.5 – 36.5 < 0.001
C vs D – 19.5 34.0 – 46.5 0.005
A vs E 25.5 – – 31.5 43.0 0.262

spectrograms extracted from natural 16-bit speech and the speech
generated by these three systems in Fig. 3. It is obvious that 16-
bit WaveRNN outperformed the 8-bit WaveRNN without spectral
enhancement especially on SNR and LSD metrics because 8-bit
WaveRNN generated waveforms with observable quantization noise
as shown in Fig. 3. After spectral enhancement, the performance
of 8-bit WaveRNN got improved significantly and outperformed 16-
bit WaveRNN on PESQ and SNR metrics. The quantization noise
was reduced as shown in Fig. 3. This indicated that the SE model
was effective at alleviating quantization noise and improving speech
quality. Comparing system C and D, we can see that the performance
of 16-bit WaveRNN after SE was not as good as that of 8-bit Wav-
eRNN after SE on PESQ and SNR metrics. One possible reason is
that, in our implementation, 16-bit WaveRNNs sometimes suffered
from unexpected spectral pulses due to sampling errors (such as the
spectral pulse between 0.4∼0.5s in the spectrogram of system A
in Fig. 3), while such issue rarely happened for 8-bit WaveRNNs.
Regarding with the comparison between system A and E, the results
on three metrics were inconsistent and further subjective evaluation
should be necessary. When constructing system D, we also carried
out an comparison experiment on single-target training where the SE
model output was only the natural LAS. However, its performance
(PESQ=3.1623, SNR=4.7911dB, LSD=8.1344dB) was worse than
multiple-target training, i.e., system D shown in Table 1.

In order to compare the generation run-time efficiency of dif-
ferent systems, the number of floating point operations (FLOPs) was
adopted as the metric. We consider that a point-wise operation took 1
FLOP, and a matrix-matrix multiply, between W (an m×n matrix)
and X (an n × p matrix) took m(2n − 1)p FLOPs. The results of
FLOPs are listed in Table 2. Considering that SE models operated at

frame-level and their generation time was negligible compared with
WaveRNN models with sample-level autoregressive operation, we
only compared the FLOPs of generating one sample using the three
WaveRNN models in the five systems. Comparing system A/C with
system B/D, we can see that the FLOPs of 8-bit WaveRNN was not
much less than that of 16-bit WaveRNN because only the dimension
of output layer was different in these two models. It is obvious that
reducing the number of hidden nodes in WaveRNNs (i.e., system E)
improved the efficiency significantly.

4.3. Subjective evaluation

Three groups of ABX preference tests were conducted to compare
the subjective performance of different systems.1 In each subjective
test, 20 utterances generated by two comparative systems were
randomly selected from the test set. Each pair of generated speech
were evaluated in random order. 10 Chinese native speakers were
asked to be the listeners. The listeners were asked to judge which
utterance in each pair had better speech quality or there was no
preference. In addition to calculating the average preference scores,
the p-value of a t-test was used to measure the significance of the
difference between two systems. According to the results in Section
4.2, both A and D outperformed B. Therefore, only three subjective
experiments were conducted and the results are listed in Table 3.

Comparing system A and D, we can see that the 8-bit WaveRNN
after SE outperformed the 16-bit WaveRNN significantly. This result
demonstrates the effectiveness of DNN-based spectral enhancement
for improving the performance of low-bit WaveRNN. Furthermore,
the 8-bit WaveRNN with SE (i.e., system C) also achieved better
subjective performance than the 16-bit WaveRNN with SE (i.e.,
system D) significantly. This is consistent with the results on
PESQ and SNR metrics shown in Table 1. The possible reason
has been discussed in Section 4.2. Finally, there was no significant
difference between the subjective quality of system A and E. On
the other hand, the efficiency of system E was about 3.4 times
higher than that of system A as shown in Table 2. This suggests
that the proposed spectral enhancement method can also help a low-
bit neural waveform generator with reduced model complexity to
achieve similar subjective performance with a high-bit counterpart.

5. CONCLUSION

In this paper, we have proposed a spectral enhancement (SE) method
for improving the quality of speech generated by low-bit neural
waveform generators. The SE model utilizes a DNN structure
to achieve a direct mapping from log amplitude spectra (LAS)
of waveforms generated by low-bit neural waveform generators
to clean LAS and amplitude ratios (AR). The ensemble decoding
strategy is adopted to predict LAS at generation time. After
combining the predicted amplitude spectra with the phase spectra
of waveforms generated by low-bit neural waveform generators,
inverse STFT is applied to obtain the enhanced waveforms. Ex-
perimental results show that our proposed SE method can alleviate
quantization noise effectively. The 8-bit WaveRNN vocoder with SE
outperformed the conventional 16-bit WaveRNN vocoder. Besides,
the 8-bit WaveRNN with SE and reduced model complexity also
achieved similar subjective performance with the conventional 16-
bit WaveRNN. To investigate other model structures for SE and to
further improve the efficiency of neural waveform generators with
SE will be our future work.

1Examples of generated speech can be found at http://home.ustc.
edu.cn/˜ay8067/ICASSP_2019/demo.html.
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