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ABSTRACT

The aim of artificial bandwidth extension is to recreate wideband
speech (0 - 8 kHz) from a narrowband speech signal (0 - 4 kHz).
State-of-the-art approaches use neural networks for this task. As
a loss function during training, they employ the mean squared er-
ror between true and estimated wideband spectra. This, however,
comes with the drawback of over-smoothing, which expresses itself
in strongly underestimated dynamics of the upper frequency band.
We previously proposed to tackle this problem by discriminative
training, i.e., a modification of the loss function that is designed to
improve the separation between fricatives and vowels. Other authors
instead took a generative adversarial network (GAN) approach. This
was motivated by the fact that GANs demonstrated big reductions
of over-smoothing in speech synthesis. In this work, we combine
these two approaches. In particular, we show that conditional GANs
improve the speech quality by a CMOS score of 0.28 compared to
GANs while the combined approach yields an improvement of 0.84.

Index Terms— artificial bandwidth extension, generative adver-
sarial networks, discriminative training

1. INTRODUCTION

The aim of artificial bandwidth extension (BWE) is to improve the
quality of narrowband (NB) telephony speech (0 - 4 kHz) by artifi-
cially extending the signal to wideband (WB), i.e., a bandwidth of
0 - 8 kHz. This is achieved by estimating the missing upper band
(UB) between 4 and 8 kHz based on the NB spectrum. In most ap-
proaches, the signal is first transformed to the frequency domain and
then decomposed into a spectral envelope and an excitation signal.
Both these parts are then extended separately, which simplifies the
estimation problem. The extension of the excitation signal is typi-
cally achieved with rather simple methods like spectral shifting. This
is perfectly sufficient, as the introduced degradation of the speech
quality is rather low [1, 2]. In early BWE approaches, the estima-
tion of WB features was often performed with codebooks, Gaussian
mixture models (GMM), or hidden Markov models (HMM).

More recent publications have shown that the performance can
be improved by using deep neural networks (DNN) [3, 4]. In most
of these approaches, the DNN is used to estimate the spectral en-
velope. Other approaches use the DNN to estimate the entire mag-
nitude spectrum [5] or even the complete time-domain waveform
[6]. Besides different DNN training targets, various DNN structures
have been employed. Basic feed-forward neural networks with fully
connected layers were used first [7, 8, 9]. The mean squared er-
ror (MSE) loss function used in these approaches, however, leads to

over-smoothing [10, 11]. This degrades the speech quality because
of low dynamics of the inserted energy. Different types of recurrent
neural networks (RNN) have been implemented [12, 13] in an effort
to model the time dependencies and dynamics more accurately. Con-
volutional neural networks (CNN) have been examined in a direct
waveform modeling approach to BWE [14] as well as in a combined
CNN / RNN approach for BWE envelope estimation [15].

In 2014, Goodfellow et al. proposed a network architecture that
may be more suitable for this task: the generative adversarial net-
work (GAN) [16]. It employs a generator network that learns to
generate data and a discriminator network that learns to distinguish
between real and generated data. These two networks with opposite
objectives are trained in tandem. Hence, over the training iterations,
the generator network generates data with its current model. The
discriminator network learns to identify the “mistakes” the genera-
tor network makes during this process. The identified mistakes are
propagated back to the generator network in the form of a gradi-
ent, such that it can continuously improve its model. Convergence is
reached when the output becomes indistinguishable from real data.
Generative adversarial networks have been applied successfully to
different fields of research, ranging from image processing [17, 18]
to speech enhancement [19, 20, 21]. In particular, it has been shown
that they can solve the over-smoothing problem in statistical para-
metric speech synthesis [22, 23]. This suggests that they may also
be beneficial for BWE. In 2018, Li et al. picked up on this idea and
showed that GANs outperform codebook and HMM approaches on
the BWE task [4]. However, they did not directly compare its per-
formance to other DNN approaches.

In this contribution, we propose to replace the GAN in [4] by
a conditional generative adversarial network (CGAN). This is moti-
vated by the fact that the original GAN approach [16] was designed
to generate data from statistically independent random noise. In
BWE, however, the estimation problem is an input-dependent task,
in which NB features are mapped to WB features. CGANs [24] take
this explicitly into account by training the discriminator with both
WB and NB features as an input. This enables the discriminator to
learn the conditional classification task whether its input is real or
generated WB data, based on the given NB data. Next to replacing
the GAN from [4] by a CGAN, we add a discriminative term to the
cost function in order to improve the separation between fricatives
and vowels [11]. This has been found to reduce the over-smoothing
problem of BWE compared to plain-vanilla MSE training [11]. The
proposed combination of CGAN BWE with the discriminative term
gives a total CMOS improvement of 1.7 over NB speech, an im-
provement of 0.84 over plain GAN training and an improvement of
0.56 compared to CGAN training without discriminative term.

7005978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



The remainder of this paper is organized as follows: In Sec-
tion 2, we briefly introduce the architecture and the training algo-
rithm for DNN, GAN, and CGAN models and we describe discrim-
inative training. The BWE algorithm using DNNs is explained in
Sec. 3. In the evaluation (Sec. 4), the BWE approaches using differ-
ent DNNs are compared and the results are discussed. The findings
are summarized in Sec. 5.

2. DNN TRAINING METHODS

This section briefly describes the neural network architectures and
training methods used in this paper, including basic mean square
error training, adversarial training, and discriminative training.

2.1. Mean Square Error Training

The baseline approach for BWE uses a simple regression DNN R
with two fully connected hidden layers. The basic setup is described
in more detail in [11]. As in most regression tasks, the MSE between
real and estimated output features, y and ŷ = R(x), is used as loss
function that is to be minimized during training:

LMSE(R) = Ex,y

[
‖R(x)− y‖22

]
. (1)

For BWE, the input features x are narrowband (NB) feature vectors.
The output features are wideband (WB) feature vectors. Initializa-
tion of the weight matrices of the DNN is performed by pre-training
with a stacked auto-encoder.

2.2. Generative Adversarial Network Training

For GAN training, the network architecture needs to be modified.
More precisely, the regression network R is replaced by a genera-
tor network G, and an auxiliary discriminator network D is added
during the training stage (see Fig. 1a). These two networks have op-
posite tasks. While the generator network learns to generate data ŷ
that can hardly be distinguished from real data y, the discriminator
network learns to distinguish real data from generated data. In other
words: the generator and discriminator networks are ”adversaries”
during the training process. Hence, the name GAN.

In the original GAN approach [16], G gets random noise z as
input. For BWE, the random noise is replaced by a NB feature vec-
tor x [4]. The output of G is the corresponding WB feature vector
ŷ = G(x), as in the simple regression DNN from above. The dis-
criminator network D classifies if its input is real or generated by
G, i.e., it is trained to produce D(y) = 1 and D(ŷ) = 0, respec-
tively. This objective can be formulated as finding the maximum of
the following function with respect to D [17]:

LGAN(G,D) =Ey [log (D(y))] + Ex [log (1−D(G(x)))] . (2)

The generator network G, on the other hand, is trained to minimize
(2), i.e., it learns to trickD into believing that the data it generated is
real data. It is important to note that the training of G and D is done
alternately, i.e., the weights of D are not updated while training G
and vice versa. In recent approaches [4, 17, 26], it has been found to
be beneficial to mix the pure GAN loss function LGAN(G,D) with
the minimum mean square error loss function from (1). This can
be interpreted as not allowing G to deviate too strongly from the
target features y while becoming indistinguishable for D from real
data. Following these approaches, we use the following combined
objective for GAN training [17]:

min
G

max
D
LMSE(G) + λGAN · LGAN(G,D). (3)
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Fig. 1. Differences between GAN and CGAN training. The upper
block diagrams show the path for generated data with a generator
network G. The lower diagrams show the path for real data. D
is trained using the upper and the lower method simultaneously on
tuples of x and y.

After optimal convergence, G should estimate the WB features so
accurately that D cannot distinguish the output of G from real WB
features.

2.3. Conditional GAN Training

In standard GANs, the discriminator network D gets real or esti-
mated WB features, y or ŷ = G(x), as an input. The idea behind
conditional GANs (cGANs) [24, 17] is to improve the discrimina-
tion by also providing the corresponding NB input features x be-
longing to y or ŷ = G(x). More specifically, D(y) and D(G(x))
are replaced by D(x, y) and D(x,G(x)), as shown in Fig. 1b. This
enables cGANs to decide whether the estimated output features are
a good fit for the given input features. A standard GAN, in contrast,
can just evaluate if the estimated output features seem realistic in
general. Apart from this difference, the training procedure is identi-
cal. Just the loss function (2) needs to be modified as follows [17]:

LCGAN(G,D) =Ex,y [log (D(x, y))]+

Ex [log (1−D (x,G(x)))] .
(4)

2.4. Discriminative Training

GAN and CGAN training are suitable alternatives to MSE training
if a regression task is subject to the over-smoothing problem [22].
Unfortunately, they do not completely solve the problem when com-
bined with the MSE like in our case. Hence, we add a “discrim-
inative” term to the loss function that forces the network to better
preserve the differences between sharp fricatives and vowels [11]:

Ld(G) =

∣∣∣∣SFPR(G(x))− SFPR(y)

SFPR(y)

∣∣∣∣2 . (5)

In this euqtaion, SFPR stands for the sharp fricative power ratio [11],
i.e., the ratio between the UB energy of sharp fricatives (s and z) and
the UB energy of all other phonemes. The idea behind this loss
function is to punish deviations of the SFPR between real WB fea-
tures y and estimated WB features ŷ = G(x), such that the network
“learns” to preserve the energy difference of the classes.

3. PROPOSED BWE ALGORITHM

The BWE algorithm used in this work is shown as a block diagram in
Fig. 2. It works entirely in the frequency domain. For the extension,
the NB spectrum SNB is first decomposed into a spectral envelope
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Fig. 2. Block diagram of BWE using a DNN where HP denotes a
high-pass at 4 kHz, STFT denotes the short-time Fourier transform
and ISTFT the inverse STFT.

SNB,env and an excitation signal SNB,exc. These parts are then ex-
tended separately to a bandwidth of 8 kHz. While the NB excitation
is extended with multiple spectral shifting [2], the spectral envelope
is extended with a neural network. This is achieved by extracting
an input feature vector x for each frame, based on the NB spectrum,
and then mapping these NB features to a WB feature vector y with
DNN regression. After this step, the estimated WB envelope Ŝ′WB,env
is reconstructed from the WB feature vector and subsequently mul-
tiplied with the estimated WB excitation Ŝ′WB,exc [11]. To avoid the
introduction of artifacts, the NB part of the estimated WB spectrum
is replaced with the original NB spectrum.

In this work, the input feature vector x of dimension 135 consists
of 30 NB Mel-frequency Cepstral coefficients (MFCCs), their first
and second derivatives in time (Delta features) as well as several
other features. A more detailed description of the feature set is found
in [27]. The output feature vector y of dimension 30 consists of 30
WB MFCC coefficients. The DNNs are trained offline, on a training
data set. For the baseline regression DNN, the mean square error
LMSE is used as a loss function. For GAN training, the combined
objective from (3) is used. The weight λGAN is set to 0.1, as this was
found to give good results in preliminary experiments. The CGAN
is trained analogously, just using the CGAN loss function (4) for the
discriminator network instead of (2).

This paper proposes to combine CGAN training (Sec. 2.3) with
discriminative training (Sec. 2.4). This is motivated by the fact that
both approaches tackle the over-smoothing problem in a different
way. Hence, they may profit from each other. The combination is
achieved by simply adding the discriminative loss term Ld(G) from
(5) to the combined objective (3) of GAN training with the CGAN
loss function (4):

min
G

max
D
LMSE(G) + λGAN · LCGAN(G,D) + λd · Ld(G), (6)

where the weight λd was set to 2.5 · 10−3. For all GAN / CGAN
trainings, the learning rate of the discriminator training was set to
two times the learning rate of the generator training. To avoid con-
vergence to a local minimum, G was trained independently of D for
2000 steps when the training process started. Subsequently, D and
Gwere trained alternately, with the weights ofD staying fixed while
G was trained and vice versa. In the following evaluation, G has ex-
actly the same architecture as the regression DNN R from Sec. 2.1,
with the only difference that no pre-training is applied. This makes
the different approaches comparable.

4. EVALUATION

Finding objective measures for the evaluation of a BWE algorithm
is a difficult task. Especially the well known measures PESQ and
POLQA are not reliably predicting the overall speech quality of a
BWE signal [28]. Therefore, the perceived speech quality assess-
ment is done with subjective listening tests. However, some objec-
tive measures are inspected to find out why listeners prefer a BWE
method to another one. The evaluation setup is similar to that in
[11]. The database used for training, validation and testing was the
TIMIT corpus of American English speech [29]. DNN training was
performed with the Adam optimizer [30] and an initial learning rate
of 1 · 10−5. L2-regularization and dropouts [31] were applied in all
cases. The regression network R and the GAN networks G and D
consist of two hidden layers with 128 nodes each. Rectified linear
units (ReLU) [25] were used as activation function. In the following
subsections, the listening test setup is described. The results of the
listening tests are shown and discussed. And the objective measures
are introduced and evaluated.

4.1. Listening Test Setup

We conducted subjective listening tests to evaluate the perceived
speech quality of the presented BWE methods. The data set that
was used consisted of 8 short German sentences, of which 4 were
spoken by a male and 4 by a female speaker. Six conditions were
tested in a comparison category rating (CCR) [32] test:

• WB: Clean speech with a bandwidth of 8 kHz

• NB: WB filtered with a low-pass at 4 kHz

• DNN: BWE using a regression DNN (see Sec. 2.1)

• GAN: BWE using a modified GAN (see Sec. 2.2)

• CGAN: BWE using a CGAN (see Sec. 2.3)

• CGAND: BWE using a CGAN with discriminative training
(see Sec. 2.4)

All BWE approaches were applied to the generated NB files. Fol-
lowing the ITU-T recommendation [32], we mapped the seven pos-
sible answers from the CCR scale (Much worse to Much better) to
integer values from -3 to 3. CGAND was compared to all other con-
ditions once for each sound file, as CGAND is the proposed method
in this paper. The test consists of direct comparisons of two con-
ditions A and B. The order of the comparisons and the assignment
of A and B was randomized. Additionally, the reliability of listeners
was tested by adding an anchor point that presents the same CGAND
sample as both A and B, for each sound file. This results in 6 compar-
isons per sound file or 48 comparisons per participant. 24 listeners,
aged between 25 and 59 years, participated in the test (21 male, 3
female). 21 of them were experienced listeners in the field of speech
enhancement. All participants were German speakers. This is im-
portant because the listeners have to know how the words should be
pronounced.

4.2. Listening Test Results

The results of the CCR listening test are presented in Fig. 3 in terms
of comparison mean opinion score (CMOS) values. The rank order
shows that every step towards more complexity improved the per-
ceived speech quality. None of the 95% confidence intervals over-
lap. This indicates that all the differences are statistically significant.
Remarkable is the high quality improvement from NB to CGAND of
1.7 CMOS points. This is higher than the degradation of CGAND
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Fig. 3. Mean CMOS ratings (bars) and 95% confidence intervals
CI95 (red error plots). Note that the limits of the y-axis do not reflect
the whole range of possible values which is [−3..3] for CMOS.

compared to WB (1.39 CMOS points). It is also way higher than the
improvement that was measured between NB and a basic DNN with
discriminative training in comparable listening tests (1.24 CMOS
points) [11]. Many listeners gave the feedback that they were not
sure whether they preferred a higher speech bandwidth or slight ar-
tifacts. Especially some expert listeners rated the NB speech quality
very high. A study with only non-experts might have shown an even
higher quality improvement between NB and BWE. The GAN train-
ing is roughly comparable to the training proposed by Li et al. [4].
The listening tests show that the performance could be improved
significantly by the proposed CGAND training (1.14 points on the
CMOS scale). It was noticed in a small pre-study that the effects of
applying discriminative training and changing the GAN to a CGAN
seem to be orthogonal. The objective results in Sec. 4.3 also show
that CGAN training tends to minimize the distance measure while
discriminative training optimizes the statistical distribution.

4.3. Objective Quality Measures

In informal listening tests and interviews with participants of the
subjective evaluation, we observed some frequent causes for a low
subjective speech signal quality. These are similar to the main chal-
lenges for BWE that were often formulated in previous studies: A
first effect that leads to low perceived speech quality is a lisping
sound. It occurs if the introduced UB energy for frames with sharp
fricatives like s and z is not high enough. A second effect that leads
to a perceived signal degradation is the insertion of high UB energy
for frames with vowels or even silence. These two effects show that
the perceived speech quality is low if the introduced energy is too
evenly distributed. The energy distribution is assessed in this study
by inspecting the mean µUB and the standard deviation σUB of the
frame-wise UB energy over time pUB [11]. The deviation of these
measures, which is introduced by UB estimation, is plotted in Fig. 4c
and 4d. Both deviations are relatively large for the basic DNN, which
indicates some amount of over-smoothing. While GAN and CGAN
lead to more or less the same improvement regarding the two distri-
bution measures, the deviations are highly reduced by discriminative
training (CGAND).

The presented measures do not take into account how the UB
energy is distributed over frequencies or whether the right frames are
chosen for a strong extension. These two aspects can be monitored
with log-spectral distance (LSD) measures that are calculated based
on just the UB or the entire WB Mel spectrum. The LSD based on
the WB Mel spectrum can be written as:

LSDMel,WB(y, ŷ) = Ey,ŷ

[
‖mWB(ŷ)−mWB(y)‖2

]
. (7)

5 10

10

10.5

11

DNN GAN CGAN CGAND

(a) LSDMel,UB

5 10
6.5

7

7.5

8

(b) LSDMel,WB

5 10
−6

−4

−2

0

(c) µUB(ŷ)− µUB(y)

5 10

−10

−5

0

(d) σUB(ŷ)− σUB(y)

Fig. 4. Performance measures, plotted while training four different
DNN models (DNN, GAN, conditional GAN (CGAN) and CGAN
with discriminative training (CGAND)). The x-axes denote the train-
ing steps in units of 105 while the values on the y-axes are given in
dB. The plots in the first row show log-spectral distance measures,
based on either the UB Mel spectrum (a) or the WB Mel spectrum
(b). The measures in the second row are based on the UB energy per
frame, namely the deviation of the mean µUB (c) and the deviation
of the standard deviation σUB (d).

Here, mWB(y) is a function that converts the MFCC coefficients y
to a logarithmic Mel spectrum by inverse discrete cosine transform
(IDCT). LSDMel,UB is calculated analogously with the only differ-
ence that mUB just returns the UB Mel frequencies [11]. Both dis-
tance measures are low for the baseline DNN that underestimates the
UB dynamics. While the GAN achieves a better energy distribution
over time, the distance measures increase. This increased distance
can be recovered by using a CGAN, without degrading performance
on the distribution measures σUB and µUB. When adding discrimi-
native training, the distance measures increase again. So, a trade-off
seems to be made between correct distribution and low spectral dis-
tance to maximize the perceived speech quality.

5. CONCLUSION

In this paper, we apply a conditional GAN with discriminative re-
gression training to BWE. The objective function for a basic GAN
does not take the NB input features into account. The conditional
training ensures that the CGAN can learn the dependencies between
NB and WB features by feeding the NB inputs to the discriminator
part. Using cGANs instead of GANs yielded a significant improve-
ment in subjective listening tests. The results of our BWE using a
CGAN are, however, still subject to the over-smoothing problem.
Hence, in this work, we propose to combine CGAN training with
a discriminative loss term that preserves the energy differences be-
tween different phoneme classes in the UB. This leads to a big im-
provement of the perceived speech quality and results in a CMOS
score of 1.7 when compared to NB.
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