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ABSTRACT

This work proposes the use of clean speech vocoder parameters
as the target for a neural network performing speech enhance-
ment. These parameters have been designed for text-to-speech
synthesis so that they both produce high-quality resyntheses
and also are straightforward to model with neural networks,
but have not been utilized in speech enhancement until now.
In comparison to a matched text-to-speech system that is given
the ground truth transcripts of the noisy speech, our model is
able to produce more natural speech because it has access to
the true prosody in the noisy speech. In comparison to two
denoising systems, the oracle Wiener mask and a DNN-based
mask predictor, our model equals the oracle Wiener mask in
subjective quality and intelligibility and surpasses the realis-
tic system. A vocoder-based upper bound shows that there
is still room for improvement with this approach beyond the
oracle Wiener mask. We test speaker-dependence with two
speakers and show that a single model can be used for multiple
speakers.

Index Terms— Speech enhancement, synthesis, vocoder

1. INTRODUCTION

The general approach of speech enhancement has been to mod-
ify a noisy signal to make it more like the clean signal [1]. The
main problems for such systems are the over-suppression of
the speech and under-suppression of the noise. Ideally, speech
enhancement systems should remove the noise completely
without decreasing the speech quality. There are, however,
statistical text-to-speech (TTS) synthesis systems that can pro-
duce high-quality speech from textual inputs (e.g., [2]) by
training an acoustic model to map text to the time-varying
acoustic parameters of a vocoder, which then generates the
speech. The most difficult part of this task, however, is pre-
dicting realistic prosody (timing information and pitch and
loudness contours) from pure text.

In this paper, we propose combining these two approaches
to capitalize on the strengths of each by predicting the acous-
tic parameters of clean speech from a noisy observation and
then using a vocoder to synthesize the speech. We show that
this combined system can produce high-quality and noise-
free speech utilizing the true prosody observed in the noisy

speech. We demonstrate that the noisy speech signal has more
information about the clean speech than its transcript does.
Specifically, it is easier to predict realistic prosody from the
noisy speech than from text. Thus, we train a neural network
to learn the mapping from noisy speech features to the acous-
tic parameters of the corresponding clean speech. From the
predicted acoustic features, we generate clean speech using a
speech synthesis vocoder. Since we are creating a clean resyn-
thesis of the noisy signal, the output speech quality will be
higher than standard speech denoising systems and completely
noise-free. We refer to the proposed model as parametric
resynthesis.

In this paper, we show that parametric resynthesis outper-
forms statistical TTS in terms of traditional speech synthesis
objective metrics. Next we subjectively evaluate the intelli-
gibility and quality of the resynthesized speech and compare
it with a mask predicted by a DNN-based system [3] and
the oracle Wiener mask [4]. We show that the resynthesized
speech is noise-free and has overall quality and intelligibility
equivalent to the oracle Wiener mask and exceeding that of the
DNN-predicted mask. We also show that a single parametric
resynthesis model can be used for multiple speakers.

2. RELATED WORK

Traditional speech synthesis systems are of two types, con-
catenative and parametric. In our previous works, [5, 6, 7, 8]
we proposed concatenative synthesis systems for denoising
speech. Though these models can generate high quality speech,
they are speaker-dependent and generally require a large dic-
tionary of speech examples from that speaker. Alternatively,
the current paper utilizes a parametric speech synthesis model,
which more easily generalizes to combinations of conditions
not seen explicitly in training examples.

In terms of parametric resynthesis, Rethage et al. [9] built
an end-to-end model to map noisy audio to explicit models
of both clean speech and noise using a WaveNet-like [10]
architecture. Compared to this model, our denoising system
is much simpler, as it does not require an explicit model of
the observed noise in order to converge and needs much less
data and time to train. This simplicity comes from using the
non-neural WORLD vocoder [11].
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Fig. 1. Vocoder denoising model

3. MODEL OVERVIEW

Parametric resynthesis consists of two stages: prediction and
synthesis as shown in Figure 1. The first stage is to train
a prediction model with noisy audio features as input and
clean acoustic features as output labels. The second stage is
to resynthesize audio using the vocoder from the predicted
acoustic features.

We use the WORLD vocoder [11] to transform between
acoustic parameters and clean speech waveform. This vocoder
allows both the encoding of speech audio into acoustic param-
eters and the decoding of acoustic parameters back into audio
with very little loss of speech quality. The acoustic parameters
are much easier to predict using neural network prediction
models than the raw audio. We use the encoding of clean
speech to generate our training targets and the decoding of
predictions to generate output audio. The WORLD vocoder
is incorporated into the Merlin neural network-based speech
synthesis system [2], and we utilize Merlin’s training targets
and losses for our model.

The prediction model is a neural network that takes as
input the log mel spectra of the noisy audio and predicts clean
speech acoustic features at a fixed frame rate. The WORLD
encoder outputs four acoustic parameters: i) spectral envelope,
ii) log fundamental frequency (F0), iii) a voiced/unvoiced de-
cision and iv) aperiodic energy of the spectral envelope. All
the features are concatenated with their first and second deriva-
tives and used as the targets of the prediction model. There are
60 features for spectral envelope, 5 for band aperiodicity, 1 for
F0 and a boolean flag for the voiced/unvoiced decision. The
prediction model is then trained to minimize the mean squared
error loss between prediction and ground truth. This archi-
tecture is similar to the acoustic modelling of statistical TTS.
We first use a feed-forward DNN as the core of the prediction
model, then we use LSTMs [12] for better incorporation of
context. For the feed-forward DNN, we include an explicit
context of ±4 neighboring frames.

4. EXPERIMENTS

4.1. Dataset

The noisy dataset is generated by adding environmental noise
to the CMU arctic speech dataset [13]. The arctic dataset
contains the same 1132 sentences spoken by four different
speakers. The speech is recorded in studio environment. The
sentences are taken from different texts from Project Guten-

berg and are phonetically balanced. We add environmental
noise from the CHiME-3 challenge dataset [14]. The noise
was recorded in four different environments: street, pedestrian
walkway, cafe, and bus interior. Six channels are available
for each noisy file, we treat each channel as a separate noise
recording. We mix clean speech with a randomly chosen noise
file starting from a random offset with a constant gain of 0.95.
The signal-to-noise ratio (SNR) of the noisy files ranges from
−6 dB to 21 dB, with average being 6 dB. The sentences
are 2 to 13 words long, with a mean length of 9 words. We
mainly use a female speech corpus (“slt”) for our experiments.
A male (“bdl”) voice is used to test the speaker-dependence
of the system. The dataset is partitioned into 1000-66-66 as
train-dev-test. Features are extracted with a window size of
64 ms at a 5 ms hop size.

4.2. Evaluation

We evaluate two aspects of the parametric resynthesis sys-
tem. Firstly, we compare speech synthesis objective metrics
like spectral distortion and errors in F0 prediction with a TTS
system. This quantifies the performance of our model in trans-
ferring prosody from noisy to clean speech. Secondly, we
compare the intelligibility and quality of the speech generated
by parametric resynthesis (PR) against two speech enhance-
ment systems, a DNN-predicted ratio mask (DNN-IRM) [3]
and the oracle Wiener mask (OWM) [4]. The ideal ratio mask
DNN is trained with the same data as PR. The OWM uses
knowledge of the true speech to compute the Wiener mask and
serves as an upper bound on the performance achievable by
mask based enhancement systems1.

A limitation of the proposed method is that the vocoder
is not able to perfectly reproduce clean speech, so we encode
and decode clean speech with it in order to estimate the loss
in intelligibility and quality attributable to the vocoder alone,
which we show is small. We call this system vocoder-encoded-
decoded (VED). Moreover, we also measure the performance
of a DNN that predicts vocoder parameters directly from clean
speech as a more realistic upper bound on our speech denoising
system. This is the PR model with clean speech as input,
referred to as PR-clean.

4.3. TTS objective measures

First, we evaluate the TTS objective measures for PR, PR-
clean, and the TTS system. We train the feedforward DNN
with 4 layers of 512 neurons each with tanh activation function
and the LSTM with 2 layers of width 512 each. We use adam
optimization [15] and early stopping regularization. For TTS
system inputs, we use the ground truth transcript of the noisy
speech. As both TTS and PR are predicting acoustic features,
we measure errors in the prediction via mel cepstral distortion
(MCD), band aperiodicity distortion (BAPD), F0 root mean

1All files are available at http://mr-pc.org/work/icassp19/
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Spectral Distortion F0 measures

System MCD (dB↓) BAPD (dB↓) RMSE (Hz↓) CORR (↑) VUV (↓)
PR-clean 2.68 0.16 4.95 0.96 2.78%

TTS (DNN) 5.28 0.25 13.06 0.71 6.66%
TTS (LSTM) 5.05 0.24 12.60 0.73 5.60%
PR (DNN) 5.07 0.19 8.83 0.93 6.48%
PR (LSTM) 4.81 0.19 5.62 0.95 5.27%

Table 1. TTS objective measures for single-speaker experiment: mean cepstral distortion (MCD), band aperiodicity (BAPD),
root mean square error (RMSE), voiced-unvoiced error rate (VUV), and correlation (CORR). For MCD, BAPD, RMSE, and
VUV lower is better (↓), for CORR higher is better (↑).

Speakers Spectral Distortion F0 measures

Model Train Test MCD (dB↓) BAPD(dB↓) RMSE(Hz↓) CORR(↑) UUV(↓)
PR slt slt 4.81 0.19 5.62 0.95 5.27%
PR slt+bdl slt 4.91 0.20 8.36 0.92 6.50%
PR bdl bdl 5.40 0.21 9.67 0.82 12.34%
PR slt+bdl bdl 5.19 0.21 10.41 0.82 12.17%

Table 2. TTS objective measures for multi-speaker parametric resynthesis models compared to single speaker model.

square error (RMSE), Pearson correlation (CORR) of F0, and
classification error in voiced-unvoiced decisions (VUV). The
results are reported in Table 1.

Results from PR-clean show that acoustic parameters that
generate speech with very low spectral distortion and F0 error
can be predicted from clean speech. More importantly, we see
from Table 1 that PR performs considerably better than the
TTS system. It is also interesting to note that the F0 measures,
RMSE and Pearson correlation are significantly better in the
parametric resynthesis system than TTS. This demonstrates
that it is easier to predict acoustic features, including prosody,
from noisy speech than from text. We observe that the LSTM
performs best and it is used in our subsequent experiments.

Evaluating multiple speaker model Next we train a PR
model with speech from two speakers and test its effectiveness
on each speaker’s dataset. We first train two single-speaker
PR models using the slt (female) and bdl (male) data in the
CMU arctic dataset. Then we train a new PR model with
speech from both speakers. We measure the objective metrics
on both datasets to understand how well a single model can
model both speakers. These objective metrics are reported
in Table 2, from which we observe that the single-speaker
models slightly out-perform the multi-speaker models. On the
bdl dataset, however, the multi-speaker model performs better
than the single-speaker model in predicting voicing decisions
and in MCD. It scores the same in BAPD and F0 correlation,
but does worse on F0 RMSE. These results show that the
same model can be used for multiple speakers. In future work
we will investigate the degree to which a single model can
generalize to completely unseen speakers.

4.4. Speech enhancement objective measures

We measure objective intelligibility with short-time-objective-
intelligibility (STOI) [16] and objective quality with perceptual
evaluation of speech quality (PESQ) [17]. We compare the
clean, noisy, VED, TTS, PR-clean speech for reference. The
results are reported in Table 3.

Of the vocoder-based systems, VED shows very high ob-
jective quality and intelligibility. This demonstrates that the
vocoder is able to produce high fidelity speech when it is fed
with acoustic parameters that are exactly correct. The PR-
clean system shows slightly lower intelligibility and quality
than VED. The TTS system shows very low quality and intelli-
gibility, but this can be explained by the fact that the objective
measures compare the output to the original clean signal.

For the speech denoising systems, the oracle Wiener mask
performs best, because it has access to the clean speech. While
it is an upper bound on mask-based speech enhancement, it
does degrade the quality of the speech from the clean by atten-
uating regions where there is speech present, but the noise is
louder. Parametric resynthesis outperforms the predicted IRM
in objective quality and intelligibility.

4.5. Subjective Intelligibility and Quality

Finally we evaluate the subjective intelligibility and quality
of PR compared with OWM, DNN-IRM, PR-clean, and the
ground truth clean and noisy speech. From 66 test sentences,
we chose 12, with 4 sentences from each of three groups: SNR
< 0 dB, 0 dB ≤ SNR < 5 dB, and 5 dB ≤ SNR. Preliminary
listening tests showed that the PR-clean files sounded quite
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Model PESQ STOI

Clean 4.50 1.00
VED 3.39 0.93
OWM 3.31 0.96

PR-clean 2.98 0.92

PR 2.43 0.87
DNN-IRM 2.26 0.80

Noisy 1.88 0.88
TTS 1.33 0.08

Table 3. Speech enhancement objective metrics: quality
(PESQ) and intelligibility (STOI), higher is better for both.
Systems in the top section use oracle information about the
clean speech. All systems sorted by PESQ.

similar to the VED files, so we included only PR-clean. This
resulted in a total of 84 files (7 versions of 12 sentences).

For the subjective intelligibility test, subjects were pre-
sented with all 84 sentences in a random order and were asked
to transcribe the words that they heard in each one. Four sub-
jects listened to the files. A list of all of the words was given
to the subjects in alphabetical order, but they were asked to
write what they heard. Figure 2 shows the percentage of words
correctly identified averaged over all files. Intelligibility is
very high (> 90%) in all systems, including noisy. PR-clean
achieves intelligibility as high as clean speech. OWM, PR, and
noisy speech had equivalent intelligibility, slightly below that
of clean speech. This shows that PR achieves intelligibility as
high as the oracle Wiener mask.

The speech quality test follows the Multiple Stimuli with
Hidden Reference and Anchor (MUSHRA) paradigm [18].
Subjects were presented with all seven of the versions of a
given sentence together in a random order without identifiers,
along with reference clean and noisy versions. The subjects
rated the speech quality, noise reduction quality, and overall
quality of each version between 1 and 100, with higher scores
denoting better quality. Three subjects participated and results
are shown in Figure 3.

From the results, we see that the PR system achieves higher
noise suppression quality than the OWM, demonstrating that
the output is noise-free. PR also achieves comparable overall
quality to OWM and PR-clean, indicating that its performance
is close to the ceiling imposed by the vocoder. This ceiling is
demonstrated by the difference between PR-clean and the orig-
inal clean speech. Note also that the large objective differences
between PR and OWM are not present in the subjective results,
suggesting that reference-based objective measures may not be
accurate for synthetic signals. The PR system achieves better
speech quality than the TTS system and better quality in all
three measures than DNN-IRM.

70 75 80 85 90 95 100

Words correctly identified (%)

DNN-IRM

TTS

PR

Noisy

OWM

Clean

PR-clean
words identified

Fig. 2. Subjective intelligibility: percentage of correctly
identified words. Error bars show twice the standard error.
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Fig. 3. Subjective quality, higher is better.

5. CONCLUSION

This paper has introduced a speech denoising system inspired
by statistical text-to-speech synthesis. The proposed para-
metric resynthesis system predicts the time-varying acoustic
parameters of clean speech directly from noisy speech, and
then uses a vocoder to generate the speech waveform. We
show that this model outperforms statistical TTS by captur-
ing the prosody of the noisy speech. It provides comparable
quality and intelligibility to the oracle Wiener mask by repro-
ducing all parts of the speech signal, even those buried in noise,
while still allowing room for improvement as demonstrated
by its own oracle upper bound. Future work will explore the
extent of speaker-independence that is achievable with this
system and other kinds of inputs like filtered and degraded
speech [19], and electrophysiological recordings like EEG [20]
and ECoG [21].
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