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ABSTRACT

The development of deep learning techniques has triggered the
active investigation of neural network-based speech enhancement
approaches. In particular, single-channel blind (uninformed) speech
separation and speaker-aware (informed) speech extraction have
received increased interest. Blind speech separation separates a
speech mixture into all source signals without requiring any aux-
iliary information about the speakers. In contrast, speaker-aware
speech extraction focuses on extracting speech from a target speaker
using prior knowledge, such as an utterance spoken by the target
speaker. Speaker extraction is therefore not fully blind, but it can
mitigate the source permutation problem faced by blind source sep-
aration, and potentially achieve better speech quality by exploiting
the auxiliary information. In this paper, to take advantage of both
approaches, we propose a unified framework for both speech separa-
tion and speech extraction using a single model. This is realized by
incorporating a speaker attention mechanism within a generalized
permutation invariant training (PIT)-based blind speech separation
model, and introducing a multitask separation/extraction objective
for training the model. Experiments on the WSJ0-2mix dataset show
that our proposed framework realizes both uninformed separation
and informed extraction, and achieves better separation/extraction
performance than a baseline PIT-based model.

Index Terms— Speech separation/extraction, neural network,
speaker attention

1. INTRODUCTION

With the advent of deep learning techniques, the performance of
automatic speech recognition (ASR) systems has significantly im-
proved [1, 2] and research interest has moved towards more chal-
lenging tasks, e.g., speech inputs contaminated by background noise
and overlapping speakers [3]. To address such challenging tasks,
deep learning-based single-channel source separation approaches
have been actively investigated [4–11].

There are currently two main research directions; 1) blind (un-
informed) speech separation [4–8] and 2) speaker-aware (informed)
speech extraction [9–11]. The purpose of uninformed speech sep-
aration is to separate an input speech mixture into as many signals
as there are in the mixture, without using any auxiliary information
about the speakers in the mixture. Uninformed separation can work
in a fully blind fashion, which may be required in many real-world
applications when the identity of the speaker in the mixture cannot be
obtained in advance. However, although recent uninformed separa-
tion approaches [4,7] solve the permutation problem within an utter-
ance, they generally suffer from a block permutation problem [12],
i.e., a permutation problem across utterances. On the other hand, the
aim of informed speech extraction is to extract only a target speaker’s
speech from the mixture, using auxiliary information about the target
speaker. Although information about the target speaker is required
for informed extraction to work, informed extraction has the poten-
tial to solve the source permutation problem faced by uninformed

separation and track speakers across utterances. In addition, by ex-
ploiting the auxiliary information in the extraction stage, informed
extraction also has the potential to achieve better speech quality than
uninformed separation.

To take advantage of both approaches, it would be desirable to
develop a framework that encompasses the capabilities of both un-
informed speech separation and informed speech extraction, which
would enhance the utility and both functionalities. To enable in-
formed extraction, one could adopt an extra speaker identification
step to identify the target speaker from the outputs of the uninformed
separation network. However, such a speaker identification step in-
evitably suffers from identification errors that would limit the speech
extraction performance. Recently, [13] proposed introducing an ad-
ditional speaker identification layer to an uninformed separation net-
work to jointly learn speaker identification embeddings and enable
informed extraction. However, the separation network does not have
access to the auxiliary information that could be beneficial for im-
proving the extracted speech quality if it could be properly exploited.

In this paper, we propose a unified framework for speech separa-
tion and extraction using a single model, which we call the attention-
based speech separation and extraction network (ASENet). We ex-
tend an uninformed speech separation approach to include an in-
formed speech extraction capability. Recent deep learning-based
speech separation approaches can be categorized into embedding
space-based approaches [4, 5] such as deep clustering (DC), and
mask estimation network-based approaches [6, 7] such as permuta-
tion invariant training (PIT). We adopt the PIT-based approach as
the basis of our proposed framework because of the simplicity of its
separation procedure, which does not require an additional cluster-
ing step, and the consistency between the training and test stages.

To realize a unified separation/extraction framework, we first
generalized a PIT-based uninformed separation model so that it
incorporated the separation mechanism internally and extended it
by introducing 1) a speaker attention mechanism that can perform
speaker selection inside the network and 2) a multitask learning-
based training procedure that considers uninformed PIT-based loss
and informed speaker-aware loss, simultaneously. With the proposed
attention mechanism, the system can perform blind speech separa-
tion when auxiliary information is unavailable, or speaker-aware
speech extraction when auxiliary information is available. More-
over, uninformed speech separation performance would also be
improved thanks to the multitask objective that adds speaker-aware
loss as an auxiliary task to the conventional PIT-based loss [13].

2. PROPOSED METHOD

The proposed framework, i.e., ASENet, operates in two modes de-
pending on the availability of the auxiliary speaker information:
1) uninformed separation mode and 2) informed extraction mode.
Firstly in Section 2.1, we generalize the conventional PIT-based
separation network by introducing an internal separation model as
the basis of the proposed architecture. Then in Sections 2.2-2.4, we
describe in detail the architecture of the proposed ASENet and its
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(a) Output separation (b) Internal separation

Fig. 1. Overview of speech separation network.

multitask learning-based training procedure.

2.1. Generalization of separation network architecture

A conventional PIT-based separation network is shown in Fig. 1-
(a). It consists of a bidirectional long short-term memory (BLSTM)-
based architecture with multiple output layers corresponding to each
speaker in the mixture. Given a sequence of short-time Fourier trans-
form (STFT)-based amplitude spectrum features of the mixture Y,
the network estimates a sequence of time-frequency (TF) masks Mi

associated with each separate output i = 1, . . . , I , where I is the
number of separate output layers. The i-th separated speech signals
X̂i are obtained by applying the estimated TF masks to the mixture
signal as X̂i = Mi�Y, where� denotes element-wise product. In
the following, to simplify the discussion, we consider the two source
cases (i.e., I = 2), although the framework can be generalized to
more sources.

Our aim is to include the speaker selection mechanism in the
PIT-based separation framework. We could undertake speaker selec-
tion after the output layers; however, it is unclear whether this would
offer the best speaker representation. Therefore, we first general-
ize the PIT-based separation to include the separation mechanism
internally, as shown in Fig. 1-(b). With such a generalization, we
can interpret the separation mechanism as being in two blocks, a
separation block that generates separate internal embedding vectors
{Zi}Ii=1 associated with each source, and a mask estimation block
that generates TF masks Mi from the internal embedding vectors,
as the following functional forms:

{Zi}Ii=1 = Separator(Y), (1)
Mi = MaskEstimator(Zi) (i = 1, ..., I), (2)

where i is the index of the output of the Separator(·). Note that we
assume that the MaskEstimator(·) can be shared by the I sources
and thus use shared parameters.

2.2. Attention-based Separation and Extraction Network

In the informed extraction mode, it is assumed that the auxiliary (tar-
get speaker) information is available when extracting the signal of
the target speaker from the mixture. Here, the auxiliary information
consists of a sequence of STFT-based amplitude spectrum features
XAUX

s derived from an utterance spoken by the target speaker and
different from that in the mixture, where s is the index of the target
speaker.

Figure 2-(a) shows the overall architecture of the proposed
ASENet. We incorporate the speaker-aware extraction functionality

(a) Overall architecture (b) Details of attention module

Fig. 2. Overview of attention-based speech separation and extraction
network (ASENet).

in the internal separation network by adding a speaker attention
module. The role of the speaker attention module is to select which
of the separate internal embedding vectors {Zi}Ii=1 corresponds to
the target speaker. We represent the entire attention-based extraction
procedure in the following functional forms:

{Zi}Ii=1 = Separator(Y), (3)

zATT
st =

I∑
i=1

astizit︸ ︷︷ ︸
Attention

, (t = 1, ..., T ) (4)

MATT
s = MaskEstimator(ZATT

s ), (5)

where {asti}Ii=1 is the attention weight vector at time step t for
the target speaker s, and i indicates an index of the internal em-
bedding vectors. Here, Separator(·) and MaskEstimator(·) are the
same module in Eqs. (1) and (2). Separator(·) converts an input
sequence of the mixture Y to a separate internal embedding vec-
tors {Zi}Ii=1, where Zi = {zit}Tt=1. The speaker attention mod-
ule reconstructs the attended internal embedding vectors for the tar-
get speaker ZATT

s = {zATT
st }Tt=1 by interpolating the separate inter-

nal embedding vectors {zit}Ii=1 over the I sources for every time
frames. Subsequently, MaskEstimator(·) estimates the TF masks
MATT

s for the attended internal embedding vectors ZATT
s .

Equation (4) corresponds to the speaker attention mechanism,
which performs a soft alignment (weighted averaging) of the sep-
arate internal embedding vectors {Zi}Ii=1 over the I sources. The
speaker attention mechanism is described in more detail in the fol-
lowing subsection.

The proposed ASENet can function in both informed and un-
informed modes. In the informed mode (i.e., XAUX

s is given), the
estimated attention weights {asti}Ii=1 in Eq. (4) are derived from
the auxiliary information. On the other hand, in the uninformed
mode (i.e., XAUX

s is not given), we can extract both speakers by
forcing the attention weights to be as,t,i=1 = 1, as,t,i=2 = 0
for the first speaker (s = 1) and as,t,i=1 = 0, as,t,i=2 = 1 for
the second speaker (s = 2). This forced attention corresponds to
the uninformed behavior of the proposed framework, described in
Section 2.1. Consequently, the proposed attention mechanism can
switch between informed and uninformed modes using estimated
or forced attention, depending on the availability of the auxiliary
information.
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2.3. Details of speaker attention mechanism

Figure 2-(b) shows the proposed speaker attention module in detail.
We use the additive attention mechanism proposed in [14] to com-
pute the attention weight vectors, but extend it by incorporating se-
quence feature extraction networks. The attention mechanism could
be time-invariant (constant over a whole utterance) or time-variant.
In this paper, we adopted a time-variant attention mechanism be-
cause it offers a more general formulation and could potentially mit-
igate remaining permutation ambiguities.

The time-variant attention weight vector {asti}Ii=1 for the tar-
get speaker s are derived from the separate internal embedding vec-
tors {Zi}Ii=1 and the auxiliary input sequence for the target speaker
XAUX

s as follows:

esti = w tanh(WVsV
it +WIVsIV

i +WAUXsAUX
s + b), (6)

asti =
exp(αesti)∑I
i=1 exp(αesti)

, (7)

where w,b,WV,WIV,WAUX are trainable weight and bias param-
eters, and α is a sharpening factor [14]. sV

it is a time-varying (local)
embedding vector of zit. sIV

i and sAUX
s are time-invariant (global)

embedding vectors of Zi and XAUX
s . These embedding vectors are

computed as follows:

{sV
it}Tt=1 = MLPV(Zi), (8)

sIV
i = MEAN(MLPIV(Zi)), (9)

sAUX
s = MEAN(MLPAUX(XAUX

s )), (10)

where MLP(·) are simple MLP-based networks, and MEAN(·) rep-
resents the mean operation over the time axis. sAUX

s is thus similar to
the sequence summary network-based approach that has been used
for speaker adaptation and target speech extraction [15, 16].

2.4. Multitask learning-based training procedure

We assume that a set of speech features {Y, {XTGT
s }Ss=1, {XAUX

s }Ss=1}
is available to train the model, where XTGT

s is a sequence of STFT-
based amplitude spectrum features of the s-th target speaker signal,
XAUX

s is the auxiliary input sequence corresponding to each target
speaker, and the number of mixed speakers S is assumed to be equal
to I . To enable both separation and extraction behaviors in the pro-
posed framework, we adopted a multitask learning-based objective
function LMTL incorporating uninformed separation and informed
extraction losses, as follows:

LMTL = εLPIT + (1− ε)LATT, (11)

LPIT = min
P∈perm(S)

1

S

S∑
s=1

l(Mps �Y,XTGT
s ), (12)

LATT =
1

S

S∑
s=1

l(MATT
s �Y,XTGT

s ), (13)

where perm(S) produces all possible permutations, P = {p1, ..., pS}
is the selected permutation, ε ∈ [0, 1] is an interpolation weight, and
l(A,B) = 1

TF
‖A − B‖2 is the mean squared error (MSE) crite-

rion. Here, Mps indicates TF masks generated in the uninformed
separation mode described in Eqs. (1)-(2), while MATT

s represents
TF masks generated in the informed extraction mode described in
Eqs. (3)-(5).

LPIT corresponds to uninformed separation loss based on the PIT
loss [7]. Because the correspondence between estimated TF masks

and speakers is unknown in the uninformed mode, the PIT-based loss
uses the permutation that minimizes the utterance-level separation
error. On the other hand, LATT corresponds to informed extraction
loss. Because the correspondence between estimated TF masks and
speakers is known thanks to the auxiliary information, we can define
the speaker-aware loss without solving the permutation.

Multitask-leaning for the PIT-based approach was investigated
in [17] using two uninformed separation losses: PIT-based and deep
clustering-based losses. Our use of multitask learning is different
since we use an informed (speaker-aware) extraction loss as an aux-
iliary task. Since our proposed framework retains the fundamen-
tal properties of the conventional PIT-based approach, techniques
proposed for PIT-based separation such as the deep clustering-based
multitask loss could also be applied to our proposed framework.

3. EXPERIMENTS

We compared our proposed ASENet with two uninformed separa-
tion methods, i.e., conventional PIT-based speech separation (PIT)
and our introduced PIT-based internal separation (Internal-PIT). In
addition, we also compared our method with SpeakerBeam [10, 18],
which is an informed target speech extraction method that adapts the
network behavior based on the auxiliary information to extract the
target speaker’s speech. We employed the scaling adaptation layer-
based SpeakerBeam described in [18], which adapts the intermediate
layer’s output by multiplying it element by element with the output
of the sequence summary network (similar to Eq. (10)).

3.1. Experimental conditions

3.1.1. Data

We evaluated our proposed method on the WSJ0-2mix dataset [4],
which consists of two-speaker mixtures generated by mixing utter-
ances from the WSJ0 corpus [19] at signal-to-noise ratio (SNR) be-
tween 0 dB and 5 dB. The sampling frequency was 8 kHz.

The training set consists of 20000 mixtures (30 hours) from 101
speakers. The development set consists of 5000 mixtures (10 hours)
from the same 101 speakers. The evaluation set consists of 3000
mixtures (5 hours) from 18 different speakers. For the auxiliary in-
formation in informed extraction, we used a randomly selected utter-
ance (different from those in the mixture) from each speaker in the
mixture for both training and testing.

3.1.2. Settings

We used magnitude spectrograms as an input for the mask estima-
tion networks, which are computed using STFT with 64 ms window
length and 16 ms window shift.

For all the experiments, we used a 3-layer BLSTM network with
512 units as shown in Figs. 1 and 2. Each BLSTM layer is followed
by a linear projection layer with 512 units to combine the forward
and backward LSTM outputs, which is based on the ESPNet imple-
mentation [20]. We employed a tanh activation after the last projec-
tion layer and 1 fully connected layer to output an amplitude mask
estimated with a sigmoid activation function. The main difference
between the evaluated methods is the position of the separate linear
layers (see Figs. 1 and 2).

For the sequence feature extraction network (i.e., MLP(·) in
Eqs. (8)-(10)), we used a network with 2 fully connected layers with
200 units and ReLU activations, followed by 1 linear output layer
with 200 units for ASENet and 512 units for SpeakerBeam. We set
the dimension of the attention inner product (i.e., the dimension of
w in Eq. (6)) at 200, and the sharpening factor α at 2.
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Table 1. SDR (dB) for different separation/extraction methods.

Method Position SDR (uninfo) SDR (info)
Mixture – 0.2

PIT 3 8.6 –
Internal-PIT 1 8.8 –

2 8.7 –
ASENet 1 9.2 9.6

2 8.7 9.1
SpeakerBeam 1 – 9.6

We adopted the Adam algorithm [21] for optimization with an
initial learning rate of 0.0001 and used gradient clipping [22]. The
training procedure was stopped after 200 epochs. For the proposed
ASENet, we set the multitask interpolation weight ε at 0.5. Note that
Internal-PIT corresponds to the ASENet (ε = 0.0).

As an evaluation metric, we used the signal-to-distortion ratio
(SDR) of BSSeval [23]. To evaluate the performance of the un-
informed separators, we used the oracle permutation (permutation
achieving best scores) to compute the SDR. This would thus cor-
respond to the upper bound performance of a system undertaking
target speaker identification on top of speech separation [24].

3.2. Experimental Results

Table 1 shows the SDR obtained with the four methods and an un-
processed mixture. “Position” denotes the number of BLSTM lay-
ers of the separation network (or the position of the adaptation layer
for SpeakerBeam). “(info)” and “(uninfo)” denote whether or not
auxiliary information XAUX

s is provided. In other words, it denotes
whether each method works as an informed extractor or an unin-
formed separator.

From Table 1, we confirmed that Internal-PIT achieved com-
parable or slightly better performance compared with PIT. ASENet
in the uninformed separator mode achieved better performance than
PIT and Internal-PIT. This result demonstrated that the use of auxil-
iary information in the training stage based on the multitask learning
scheme could improve the uninformed separation performance.

ASENet in the informed extractor mode successfully improved
the performance compared to the uninformed separation methods
and achieved comparable performance to SpeakerBeam, which is
specially designed for the target speaker extraction. Note that this
result demonstrated that our proposed ASENet performed better
than uninformed separation with oracle permutation (oracle tar-
get speaker assignment, i.e. speaker identification error of 0%),
which confirms the potential of performing the speaker selection
process internally. These results proved the effectiveness of our
proposed framework, which realized both uninformed separation
and informed extraction behaviors using a unified attention-based
architecture.

Finally, focusing on “Position” for ASENet, we confirmed that
the allocation of the separate linear layers and attention module at a
lower layer is important as regards achieving better performance.

3.3. Analysis of Attention Module Behaviors

To observe the behavior of our proposed speaker attention module,
we analyzed the histograms of the attention weights. Figure 3 shows
histograms of the time-variant attention weights for two typical mix-
tures. The attention weights for the first speaker {as=1,t,i}Tt=1 and
second speaker {as=2,t,i}Tt=1 are shown in red and blue, respec-
tively. The histograms indicate which separate internal embedding
vectors {zit}I=2

i=1 the speaker attention module attended over the

(a) Mixture 1 (b) Mixture 2

Fig. 3. Histograms of time-variant attention weights for two typical
mixtures.

time frames. For the purpose of discussion, we focused on the case
where i = 1, and therefore as,t,i=1 = 1 means that the speaker at-
tention module attends the first internal embedding vector zi=1,t to
extract the speech of the s-th target speaker at time step t. Moreover,
as,t,i=1 = 0 means that it attends the second internal embedding
vector zi=2,t (see Fig. 2-(a) and Eqs. (4) and (7)).

Figure 3-(a) shows a mixture for which the separation perfor-
mance was similar with and without auxiliary information. As seen
in the figure, the attention module mainly attended to one of the two
internal embedding vectors {zit}I=2

i=1 . This distribution resembles
that of the uninformed separation mode in the proposed method,
where we forced the use of one of the two internal embedding vec-
tors. Therefore, for this mixture, the separation performance did not
improve significantly when using the auxiliary information. This re-
sult suggests that the developed attention module had the potential
to automatically adopt behavior close to the uninformed separation
mode, when the uninformed separation had already achieved suffi-
cient separation quality.

Figure 3-(b) shows a mixture for which the separation perfor-
mance greatly improved when using auxiliary information. As seen
in the figure, in this case the attention module attended to both the
internal embedding vectors {zit}I=2

i=1 and interpolated both of them
more frequently. This result suggested that the developed attention
module had the potential to recover the extracted speech quality by
utilizing the auxiliary information, even when the uninformed sepa-
ration completely failed to separate the mixture.

4. CONCLUSION

In this paper, we proposed a unified framework for neural network-
based uninformed speech separation and informed speech extraction,
and a training procedure based on multitask learning scheme. Our
experimental results obtained with the WSJ0-2mix dataset showed
that we could successfully perform both separation and extraction
using a single model. In particular, our proposed ASENet achieved
better performance than a conventional blind speech separation
method, i.e., PIT, even with oracle permutation and performed com-
parably to a conventional speaker-aware speech extraction method,
i.e., SpeakerBeam. Moreover, thanks to the multitask learning
scheme, we were able to improve the uninformed separation perfor-
mance compared with a conventional PIT-based approach.

In this paper, we evaluated our proposed method only for two-
speaker mixtures without noise. However, because our proposed
method follows the conventional PIT-based separation framework, it
could be applied to more than three-speaker mixtures with noise [7].
Evaluating the effectiveness of our proposed method for such chal-
lenging setups will form part of our future research work.
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