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ABSTRACT

This paper proposes a generative adversarial training method
for deep neural network (DNN)-based singing voice synthesis.
The DNN-based approach has been used in statistical parametric
singing voice synthesis and improved the naturalness of the synthe-
sized singing voice [1]. Recently, generative adversarial networks
(GANSs) [2] have attracted significant attention in various machine
learning research areas including speech synthesis [3]. GANs have
achieved great success in modeling the distributions of complex
data, and they have the potential to alleviate over-smoothing prob-
lem on the generated speech parameters in speech synthesis. In this
paper, we propose a DNN-based singing voice synthesis system in-
corporating the GAN. Experimental results show that the proposed
method outperforms the conventional method in the naturalness of
the synthesized singing voice.

Index Terms— Singing voice synthesis, generative adversarial
network, neural network

1. INTRODUCTION

In recent years, deep neural networks (DNNs) have attained signif-
icant improvement in various machine learning areas such as im-
age recognition [4, 5], speech recognition [6], and speech synthe-
sis [7, 8]. In a DNN-based text-to-speech synthesis system, DNN-
based acoustic models can represent complex dependencies between
linguistic feature sequences and acoustic feature sequences more
efficiently than conventional hidden Markov model (HMM)-based
acoustic models [9]. DNN-based singing voice synthesis has also
been proposed, and it can produce a natural sounding synthesized
singing voice [1]. Recently, neural networks that can model audio
waveforms directly, e.g., WaveNet [10], SampleRNN [11], and FFT-
Net [12], have been proposed. Such neural networks are used as
vocoders in the speech field and improve the quality of synthesized
speech compared to conventional vocoders. The neural vocoders use
acoustic features as inputs. Therefore, accurately predicting acoustic
features from linguistic features by acoustic models is still an impor-
tant issue to generate high quality speech or singing voice.

DNN-based acoustic models are generally trained with the min-
imum mean squared error (MSE) criterion or maximum likelihood
criterion. However, this is problematic for the prediction of acous-
tic features. It is known that the distribution of acoustic features
is multimodal, as humans can sing the same lyrics in many differ-
ent ways. The conventional training approaches of neural networks
cannot learn to model any more complex distributions of acoustic
features than a unimodal Gaussian distribution. Hence, the gener-
ated speech parameters tend to be over-smoothed, which leads to
deterioration of the naturalness of synthesized speech.

Generative adversarial networks (GANs) [2] were recently in-
troduced as a novel way to train a generative model. A GAN is a
powerful generative model that has been successfully used in im-
age generation [13, 14] and other tasks [15, 16]. They consist of
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two neural networks: a generator that captures the data distribution,
and a discriminator that estimates the probability that a sample came
from the training data rather than the generator. These networks are
trained adversarially, where the generator aims at deceiving the dis-
criminator, and the discriminator is trained to distinguish the natural
and generate feature samples. GANs have achieved great success
in modeling the distributions of complex data because GAN-based
training is equivalent to minimizing the divergence between true
data distribution and generated data distribution. In text-to-speech
synthesis, a GAN-based training method has been proposed [3, 17].
The generator acts as an acoustic model and is optimized by an ad-
versarial loss computed using the discriminator. It is reported that
the over-smoothing effect of the generated speech parameters is al-
leviated, and the naturalness of synthesized speech is significantly
improved by adversarial training.

In this paper, we introduce the generative adversarial network
into the DNN-based singing voice synthesis system. Additionally,
we propose a the DNN-based singing voice synthesis with the con-
ditional generative adversarial network (CGAN) [18]. By apply-
ing GAN and CGAN-based training, the acoustic models are opti-
mized for complex distributions representing the acoustic features
of singing voices.

The rest of this paper is organized as follows. Sections 2 and
3 of this paper describe statistical parametric singing voice synthe-
sis based on DNNss and the generative adversarial training method,
respectively. The experimental conditions and results are provided
in Section 4. Concluding remarks and future work are presented in
Section 5.

2. CONVENTIONAL DNN-BASED SINGING VOICE
SYNTHESIS

Figure 1 gives an overview of the DNN-based singing voice synthe-
sis system [1]. In the statistical parametric singing voice synthesis
using DNN-based acoustic models [1], a DNN represents a map-
ping function from score feature sequences including linguistic and
musical score information (e.g., phonetic, note key, and note length
features) to acoustic feature sequences (e.g., spectral, excitation, and
vibrato parameters). In the training phase, the DNN aims to mini-
mize the loss function L(o, 0) as

T

L(0,6) = —[[N(o: | 61, ), (1)
t=1

60 =g(l), @

where T is the number of frames included in a song, o is a sequence
of acoustic feature vectors consisting of a static and their dynamic
feature vectors, o is the output parameter from a trained neural net-
work, I is a sequence of score feature vectors, and g(-) is a non-linear
mapping function represented by the DNN. N( - | pt, 3) denotes the
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Gaussian distribution with a mean vector p and a covariance ma-
trix 3. In the synthesis phase, the score features extracted from a
given musical score to be synthesized are mapped to acoustic fea-
tures by the trained DNN. The optimal static-feature sequence ¢ is
given by

¢ = argmax N (We | p,X), 3)

where c is the static feature sequences and W' is a window matrix for
calculating dynamic features from a static feature sequence. Param-
eter trajectories are generated considering the relation between static
and dynamic features by the maximum likelihood parameter gener-
ation (MLPG) algorithm [19] to generate smooth speech parameter
trajectories.

In the statistical parametric approaches to singing voice synthe-
sis, it is difficult to express contextual factors that hardly ever appear
in the training data. Although databases including various contextual
factors should be used in DNN-based singing voice synthesis sys-
tems, it is almost impossible to cover all possible contextual factors
because singing voices involve a huge number of them, e.g., keys,
lyrics, dynamics, note positions, durations, and pitch. Pitch should
be correctly covered because generated Fj trajectories greatly affect
the quality of the synthesized singing voices.

To address this problem, a musical-note-level pitch normaliza-
tion technique has been proposed for DNN-based singing voice syn-
thesis systems [1]. In this technique, the differences between the log
Foy sequences extracted from waveforms and the pitch of musical
notes are modeled. This technique makes it possible for DNN-based
singing voice synthesis systems to generate variable singing voices
that include any pitch.

3. ADVERSARIAL TRAINING FOR SINGING VOICE
SYNTHESIS

A GAN is a framework for learning deep generative models by an
adversarial process. It consists of two neural networks: a generator
that captures the data distribution, and a discriminator that estimates
the probability that a sample came from the training data rather than
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Fig. 2. The proposed GAN-based training framework for singing
voice synthesis.

the generator. In this paper, the GAN is applied to the singing voice
synthesis.

3.1. GAN-based singing voice synthesis

Figure 2 gives an overview of the GAN-based training framework
for singing voice synthesis. In this framework, the generator G is an
acoustic model that predicts acoustic features o; from score feature
sequences l¢, and it is written by 6: = G(¢). It should be noted that
there is a difference from vanilla GAN [2] in that the inputs of the
generator are score feature sequences instead of random noise. The
discriminator is a classifier that aims to discriminate whether acous-
tic features are real features from the training data or fake features
generated by G. D(o;) represents the posterior probability that o,
came from the data rather than training data. The discriminator is
optimized by minimizing the following loss function:

L™ (0,6) = LT (0) + LT (0), (O]
where LG4 (0) and LG (6) represent loss functions for natu-

ral acoustic features and generated acoustic features, respectively,
which are given by

L$ N (0) = —ZlogD o), ®)
t=1
T

L5 (6 Z og(1— D(6v)). ©)

After updating the discriminator, the generator is trained to minimize
the following loss function LEAN (0, 6):

L& (0,6) = L(0,6) + wLE Y (6), @
where LAY
The balance between the two loss functions L(o, 6) and LGAN([))
is controlled by the GAN weight w. This framework is helpful in
minimizing the divergence between the natural and generated speech
parameters. In the synthesis phase, acoustic features are predicted by
the trained generator using forward propagation and smooth speech
parameters trajectories are generated by the MLPG algorithm in the
same fashion as the conventional DNN-based system.

(6) means adversarial loss to deceive a discriminator.

3.2. Conditional GAN-based singing voice synthesis

Although the GAN-based framework can minimize the adversar-
ial loss, the discriminator may not be able to capture context-
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dependent differences between natural and generated acoustic fea-
tures. Hence, we introduced a conditional generative adversarial net-
work (CGAN) [18] framework to discriminate the acoustic feature
more appropriately. Figure 3 gives an overview of the CGAN-based
training framework for singing voice synthesis. The input of the
discriminator is a joint vector of an acoustic feature vector and score
feature vector representing linguistic and musical features, so the
discriminator can distinguish natural or generated features consid-
ering linguistic and musical information. The loss functions of the
discriminator and the generator, LE*N(0,6) and LESAN (0, 6)
can be defined as

L$*N(0,6) = LS (0,1) + LS (6,1), ®)
L& (0,6) = L(0,06) + wLYN (6,1, ©)
where L%%AN(O, 1) and L%%AN (6,1) are given by
CGAN 1 &
LS9 (0,1) = fTZlogD(ot,lt), (10)
CGAN 1 tTl
LGN (6,1) = ~7 ;log(l — D(64,11)). an

In this framework, the generator and the discriminator are trained
to minimize LESAN (0, 6) in Eq. (9) and LEC*N (0, 6) in Eq. (8),
respectively.

4. EXPERIMENTS

4.1. Experimental conditions

In this experiment, 70 Japanese children’s songs (total: 70 min) by
female singer f001 were used. For training, 60 songs were used, and
the others were used for testing. Singing voice signals were sampled
at 48 kHz and windowed with a 5-ms shift. The feature vectors con-
sisted of O-th through 49-th STRAIGHT mel-cepstral coefficients,
log Fp value, O-th through 24-th mel-cepstral analysis aperiodicity
measures, and 2-dimensional vibrato parameters. Mel-cepstral coef-
ficients were extracted by STRAIGHT [20]. The vibrato parameter
vectors consisted of amplitude (cent) and frequency (Hz).
Five-state, left-to-right, no-skip HSMMs were used to obtain
time alignment of score features to acoustic features for training the
DNN-based acoustic models. The decision tree-based context clus-
tering technique was separately applied to distributions for the spec-
trum, excitation, state duration, and time-lag. The spectrum stream
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was modeled with single multivariate Gaussian distributions. The
excitation stream was modeled with multi-space probability distri-
butions HSMMs (MSD-HSMMs) [21], each of which consisted of
a Gaussian distribution for “voiced” frames and a discrete distribu-
tion for “unvoiced” frames. The vibrato stream was also modeled
with MSD-HSMMs, each of which consisted of a Gaussian distribu-
tion for “vibrato” frames and a discrete distribution for “no-vibrato”
frames. The MDL criterion [22] was used to control the size of the
decision trees.

4.2. Experiment 1

In this experiment, the following three systems were compared.

e Baseline: Conventional DNN-based system trained by mini-
mizing the loss function in Eq. (1)

o GAN-mgc: Proposed system using GAN-based framework
trained by minimizing the loss function in Eq. (7)

o CGAN-mgc: Proposed system using CGAN-based frame-
work trained by minimizing the loss function in Eq. (9)

The input feature vector for the above three systems was an 842-
dimensional feature vector consisting of 734 binary features for
categorical linguistic contexts, 108 numerical features for numerical
contexts, and duration features including the duration of the current
phoneme and the position of the current frame. In the DNN of Base-
line and the generator of GAN-mgc and CGAN-mgc, the output
feature vector was a 236-dimensional feature vector consisting of 50
mel-cepstral coefficients, log Fy value, 25 dimensional mel-cepstral
analysis aperiodicity measures, 2-dimensional vibrato parameters
and their dynamic features (delta and delta-delta), a voiced/unvoiced
binary value, and a vibrato/no-vibrato binary value. The discrimina-
tor of GAN-mgc used the 150-dimensional feature vector consisting
of 50 mel-cepstral coefficients and their dynamic features (delta and
delta-delta), and the one of CGAN-mgc used the joint vector of
the 150-dimensional feature vector, which is the same as the input
vector in GAN-mgc and the 842-dimensional feature vector, which
is the score feature vector as the generator input vector. GAN-mgc
and CGAN-mgc output a single scalar representing the probability.
As the generator of GAN-mgc and CGAN-mgc, a single network
that modeled every spectral, excitation, aperiodicity, and vibrato
parameter was trained.

The architecture of the DNN-based acoustic models was a 3-
hidden-layer feed-forward neural network with 2048 units per layer.
The architecture of the discriminator was a 2-hidden-layer feed-
forward neural network with 1024 units per layer. The sigmoid
and linear activation functions were used for the hidden and output
layers of the generator, respectively, and the leaky ReLU and the
sigmoid activation functions were used for the hidden and output
layers of the discriminator, respectively. The weight parameters of
all neural networks were initialized randomly. The weight param-
eters of the DNN in Baseline and the discriminator in GAN-mgc
and CGAN-mgc were initialized randomly. The DNNs were opti-
mized by minimizing the loss function in Eq. (1). In GAN-mgc and
CGAN-mgc, the weight parameters of the generator were initial-
ized by a trained DNN in Baseline, and then they were optimized
by minimizing the loss function in Eq. (4) or Eq. (8). Finally, the
generator and discriminator were both trained simultaneously using
the adversarial training framework described in Section 3.

To objectively evaluate the performance of the systems, we cal-
culated the averaged global variance (GV) of the mel-cepstral coef-
ficients. Figure 4 shows the averages from the evaluation data. As
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shown in the figure, GAN-mge and CGAN-mgc improved the av-
eraged GV compared to the Baseline. This result indicates that the
over-smoothing problem is alleviated by using the adversarial train-
ing method.

The naturalness of the synthesized singing voice was assessed
by the mean opinion score (MOS) test method. The subjects were
ten Japanese students in our research group. Twenty musical phrases
were chosen at random from the test songs. In the MOS test, after
listening to each test sample, the subjects were asked to assign the
sample a five-point naturalness score (5: natural — 1: poor).

Figure 5 shows the results of subjective evaluation scores. The
GAN-based systems, GAN-mge and CGAN-mge, outperformed
Baseline significantly. These results clearly show that the natural-
ness of synthesized singing voices was improved by introducing
adversarial training. Also, comparing GAN-mge and CGAN-mgc,
CGAN-mgc obtained a better score than GAN-mge. This result
suggests that using the discriminator conditioned by linguistic and
musical information is effective for the adversarial training for
singing voice synthesis.

4.3. Experiment 2

In this experiment, the following three systems were compared to
evaluate the effectiveness of the acoustic features input to the dis-
criminator for the adversarial training.

e Baseline: Conventional DNN-based system trained by mini-
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mizing the loss function in Eq. (1)

o CGAN-mgc: Proposed CGAN-based system that used spec-
tral features as the input of the discriminator

o CGAN-all: Proposed CGAN-based system that used spec-
tral, excitation, aperiodicity, and vibrato parameters as the
input of the discriminator

In CGANe-all, the input and output feature vectors for the generator
were the same as those used in CGAN-mgc. The input of the dis-
criminator in CGAN-all used the joint vector of the 236-dimensional
feature vector, which consisted of spectral, excitation, aperiodicity,
and vibrato parameters, and 842-dimensional feature vector, which
was the same vector as the input feature vector of the generator. The
MOS test was conducted in the same manner as experiment 1.

Figure 6 shows the results of subjective evaluation scores. Com-
paring Baseline to CGAN-all, CGAN-all outperformed Baseline,
though comparing CGAN-all to CGAN-mgc, CGAN-all did not
reach CGAN-mgc. This result suggests that the excitation, aperi-
odicity, and vibrato parameters were not effective in the proposed
CGAN-based method. It seems that this is because the discrimina-
tor classifies input feature vectors as real or fake frame-by-frame.
It is expected that the CGAN-based method can model acoustic fea-
tures (e.g., the excitation parameters) more effectively by classifying
acoustic features as a sequence in the discriminator.

5. CONCLUSIONS

In this paper, we proposed the DNN-based singing voice synthe-
sis using generative adversarial networks (GANs). The proposed
method can model acoustic features more accurately than conven-
tional DNN-based systems, and it can solve the over-smoothing
problem. Experimental results show that the proposed method can
alleviate the over-smoothing problem and improve the naturalness of
a synthesized singing voice compared to a conventional DNN-based
system. Future work includes exploring a sequential model structure
for the discriminator to distinguish acoustic features, including F'0
sequences.
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