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ABSTRACT 

 

In this paper, we investigate multi-speaker emotional acoustic 

modeling methods for convolutional neural network (CNN) 

based speech synthesis system. For emotion modeling, we 

extend to the speech synthesis system that learns a latent 

embedding space of emotion, derived from a desired 

emotional identity, and we use emotion code and mel-

frequency spectrogram as an emotion identity. In order to 

model speaker variation in a text-to-speech (TTS) system, we 

use speaker representations such as trainable speaker 

embedding and speaker code. We have implemented speech 

synthesis systems combining speaker representation and 

emotion representation and compared them by experiments. 

Experimental results have demonstrated that the multi-

speaker emotional speech synthesis approach using trainable 

speaker embedding and emotion representation from mel 

spectrogram achieves higher performance when compared 

with other approaches in terms of naturalness, speaker 

similarity, and emotion similarity. 

Index Terms— Text-to-speech, expressive speech 

synthesis, multi-speaker acoustic modeling, convolutional 

neural network 

 

1. INTRODUCTION 

 

Deep neural networks (DNNs) have been widely adopted in 

various speech processing tasks, including speech synthesis 

[1, 2]. Currently, the demand for improving flexibility and 

controllability in speech synthesis system is increasing 

greatly for human-computer interactions. 

In relation of speaker variability, Fan et al. [3] proposed a 

DNN-based multi-task learning for multi-speaker modeling 

that has speaker specific outputs, and Pascual et al. [4] 

utilized similar approach using recurrent neural networks 

(RNN)-long short term memory (LSTM) architectures [5]. 

Hojo et al. [6] introduced the use of speaker codes, and Zhao 

et al. [7] compared the performance of feeding speaker 

identity vectors, namely, i-vectors and speaker codes, into the 

input layer. In addition, Li et al. [8] presented the multi-

language multi-speaker text-to-speech (TTS) system. 

Inspired by the controlling speaker variability, the emotion 

control techniques have been studied. An et al. [9] suggested 

an approach that retraining a neutral neural network model by 

adding emotion codes to each layer of the model. Inoue et al. 

[10] investigated how to control speaker variability and 

emotional variability at the same time. 

Recently, Skerry-Ryan et al. [11] have demonstrated 

prosody transfer via a learned representation of prosody 

directly from acoustic signals, namely mel spectrograms. 

They showed that conditioning Tacotron [12] on the learned 

embedding resulted in synthesized audio that matched the 

prosody of the reference signal even when the reference and 

synthesis speakers were different. The predicted mel-

frequency spectrograms [13] were synthesized via WaveNet 

vocoder [14] to improve audio fidelity. 

Motivated in a way similar to these previous studies, 

including modeling of speaker identity, we augment speech 

synthesis system with reference encoder [11] which extracts 

a fixed-length learned representation from emotion identity 

and reproduce the desired speaker’s emotional speech audio. 

In this work, we conduct a comparative study on the 

controllability of different speaker representation and 

emotion representation. Besides, we synthesize speech 

signals from predicted mel spectrograms using WaveNet 

vocoder and evaluate the performance in quality, naturalness, 

and similarity. 

 

2. MULTI SPEAKER EMOTIONAL SPEECH 

SYNTHESIS 

 

The overall architecture of the multi-speaker emotional 

speech synthesis system is illustrated in Figure 1. In the 

convolutional neural network (CNN)-based speech synthesis 

system, CNN takes the linguistic features as input and 

acoustic features (mel spectrograms) as output and learns the 

mapping between the linguistic and acoustic space. To take 

long contextual information, we use dilated convolutional 

network [24] instead of recurrent neural network (RNN). 

Similar to [15], the convolutional block consists of a 1-D 

convolution, a gated linear unit as a learnable nonlinearity 

[25], and a residual connection to the input. The speaker 

representation corresponding to the true speaker of the signal 

is added as a bias to the convolution filter output after a 

softsign function. To explicitly control emotion, we add the 

reference encoder module to learn the latent representation of 

emotion. As with the speaker representation, the emotion 

representation is used across the convolutional layers. 

6950978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



2.1. Emotion representation modeling 

 

We extend the CNN architecture by adding the reference 

encoder module [11] that takes an emotion identity as input 

and extracts a fixed-length embedding from it. During 

inference, we can use the reference encoder to encode any 

desired emotional mel spectrogram sequence or emotion code. 

For the reference encoder architecture, we use a 6-layer 2-D 

convolutional network that the number of filters in each layer 

are 32, 32, 64, 64, 128, and 128. Each layer is composed of 3 

x 3 filters with 2 x 2 stride, same padding, and ReLU 

activation. Batch normalization [16] is applied to every layer. 

The output of the final convolutional layer is passed into a 

single Gated Recurrent Unit (GRU) [17] layer containing 128 

units, followed by tanh activations. 

Given an emotion identity, the reference encoder retrieves 

the corresponding emotion representation and this 

representation is used across the CNN architecture. 

 

2.1.1. Emotion estimation from mel spectrogram 

A mel-frequency spectrogram [13] includes various kinds of 

information not only linguistic but also non-linguistic such as 

prosody. As the prosody contains emotional information, mel 

spectrogram can be used as emotion identity. Hence, 

estimation of emotion representation from mel spectrogram 

sequences utilizing the reference encoder is investigated in 

this paper. 

 

2.1.2. Emotion estimation from emotion code 

Emotion code has achieved promising results in emotional 

speech synthesis [9, 10]. As described in [10], if there are M 

emotions’ corpora for model training, the emotion code 𝐸(𝑗) 

for the j-th emotion is defined as 𝐸(𝑗) = (𝑒1
(𝑗), 𝑒2

(𝑗), …   

, 𝑒𝑀
(𝑗)), where each value 𝑒𝑚

(𝑗) is expressed as follows. 

 

𝑒𝑚
(𝑗) = {

1 (𝑚 = 𝑗)
0 (𝑚 ≠ 𝑗)

 

 

2.2. Speaker representation modeling 

 

Learning multi-speaker models via conditioning on speaker 

representation is straightforward. In order to synthesize 

speech using multiple speakers, we describe trainable speaker 

embedding method similar to that presented in [15], and 

speaker code method [6, 7, 10]. 

 

2.2.1 Speaker embedding 

We augment our acoustic model with a single low-

dimensional speaker embedding vector per speaker. The 

weights of speaker embedding are initialized randomly from 

a normal distribution with mean 0 and standard variation 0.01. 

The speaker embedding is trained jointly with the model, and 

thus the hidden layers are shared among all speaker types. 

The i-th speaker representation 𝑆𝐸(𝑖)  is the corresponding 

embedding vector of speaker index i. 

 

2.2.2 Speaker code 

To control speaker, speaker code method based on neural 

networks has been demonstrated as a valid multi-speaker 

modeling method. As described in Section 2.1.2, we can 

simply use 𝑆(𝑖) = (𝑠1
(𝑖), 𝑠2

(𝑖), … , 𝑠𝑁
(𝑖))  to represent the i-th 

speaker code, and each 𝑠𝑛
(𝑖) is defined as follows. 

 

𝑠𝑛
(𝑖) = {

1 (𝑛 = 𝑖)
0 (𝑛 ≠ 𝑖)

 

 

 

3. EXPERIMENTS 

 

3.1. Experimental setup 

 

In the experiments, we used speech data in Korean from 10 

speakers (5 female and 5 male speakers). The dataset 

consisted of 200 phonetically balanced sentences in 4 

speaking styles, happy, anger, sad, and neutral. We randomly 

divided 4000 sentences into 3400 utterances for training, 400 

utterances for valid, 200 utterances for test. Speech signals 

were sampled at 22.05 kHz, 16 bits. For acoustic features, we 

used 80 mel spectrograms and 1024 spectrograms, through a 

short-time Fourier transform (STFT) using a 1024 window 

length and 256 hop length. Acoustic features were scaled to 

log-magnitude and then normalized to the range of (0, 1]. For 

linguistic features, we extracted a rich set of textual features 

including phoneme information, prosodic boundary, state 

information and the corresponding position index, 

represented by a 342-dimensional vector with binary and/or 

numerical features. The state information were obtained by 

forced alignment using the Hidden Markov Model Toolkit 

(HTK) [18]. Numerical linguistic features were normalized to 
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have zero mean and unit variance and then rescaled to the 

range of (0, 1]. After the mapping from linguistic features to 

acoustic features was learned, the generated acoustic features 

were fed to WaveNet vocoder [13] to synthesize speech 

waveform. We separately trained speaker-dependent 

WaveNet vocoder on all ground-truth mel spectrograms and 

waveforms except the utterance in the test set. For fast 

waveform reconstruction, the generated mel spectrograms 

were synthesized by first learning a linear spectrogram 

prediction network [15], and then applying Griffin-Lim 

spectrogram inversion [19]. 

To evaluate the performance of the objective and 

subjective evaluations, we trained five systems: 

• SC-EC: The model using speaker code and emotion 

code [10] 

• SC-EEC: The model using speaker code (Section 2.2.2) 

and emotion representation from emotion code (Section 2.1.2) 

• SC-EEM: The model using speaker code (Section 2.2.2) 

and emotion representation from mel spectrogram (Section 

2.1.1) 

• SE-EEC: The model using speaker embedding (Section 

2.2.1) and emotion representation from emotion code 

(Section 2.1.2) 

• SE-EEM: The model using speaker embedding (Section 

2.2.1) and emotion representation from mel spectrogram 

(Section 2.1.1) 

In common, all systems were composed of 7 dilated 

convolutional layers with 256 filters. 1-D convolutional 

layers consisted of 3 kernels with causal padding, but the first 

and last layers consisted of 1 kernel with no padding. The 

numbers of dilations in each convolutional layer were 1, 1, 3, 

9, 27, 1, and 1. Dropout with probability 0.05 was applied 

except the first convolutional layer. The systems were 

implemented using PyTorch [20] and Adam [21] algorithm 

was employed as the optimizer. 

 

3.2 Objective evaluation 

 

To objectively evaluate the performance of the above systems, 

we adopted four measures, mel cepstral distortion (MCD), 

band aperiodicity distortion (BAPD), fundamental frequency 

(F0) distortion in the root mean squared error (RMSE), and 

voice/unvoiced (V/UV) error rate. We extracted 59-

dimensional mel cepstral coefficients (MCEPs) plus log 

energy, 2-dimensional BAPs, logarithmic F0, and V/UV 

decision from the target and synthesized waveforms using 

WORLD vocoder [22]. 

 

3.3 Subjective evaluation 

 

To evaluate the performances of synthetic speech, subjective 

evaluation was performed for naturalness, speaker similarity, 

and emotion similarity. A mean opinion score (MOS) test for 

naturalness and two types of degradation mean opinion score 

(DMOS) test for similarity were conducted. 14 Korean 

subjects listened to the synthesized speech in each of the other 

five systems through headphones. 160 sentences (4 sentences 

covering 4 emotions from 10 speakers) were synthesized 

using each method. A five-point scale (from 1: very unnatural 

to 5: very natural) was adopted for MOS. In the DMOS tests, 

the quality of speech synthesized by the five systems was 

compared to the reference speech vocoded by WaveNet in 

terms of speaker similarity and emotion similarity. A five-

point scale was used to judge the speaker similarity and 

emotion similarity for DMOS (from 1: very dissimilar to 5: 

very similar).  

 

3.4 Results and discussion 

 

The objective performance comparison result is illustrated in 

Table 1. When employing emotion code as input for the 

reference encoder, SC-EEC and SE-EEC are on par with or 

slightly worse than SC-EC baseline. But when mel 

spectrogram is attached to emotion identity, SC-EEM and 

SE-EEM achieve better performance than SC-EC baseline. 

Also, SC-EEM and SE-EEM significantly outperform SC-

EEC and SE-EEC, respectively. By utilizing trainable 

speaker embedding, SE-EEC slightly outperforms SC-EEC, 

and SE-EEM also marginally outperforms SC-EEM except 

for BAPD. Moreover, we can see that the results of objective 

measures are not noticeably different across all systems 

because WaveNet vocoder generates buzzy voice sometimes, 

which can be considered as the lack of training data for 

WaveNet vocoder. 

Fig. 2 presents the MOS results for naturalness. SC-EEC 

and SE-EEC are comparable with SC-EC. Fig. 3 and Fig. 4 

show the DMOS results for speaker and emotion similarity, 

respectively. SC-EEM and SE-EEM achieve significantly 

better performance than the other systems. The performances 

of SC-EEC and SE-EEC are better than that of SC-EC. In 

particular, we can see that emotion similarity for sad is higher 

than that for other emotions on all systems. It may mean that 

using the same embedding for each frame has a limitation in 

maintaining emotion similarity, because the other emotional 

utterances have greater differences in prosody over time than 

sad utterances. We can see that the scores of sad similarity 

DMOS tests have overall the lowest values through all 

systems. 

One interesting observation is that even though SC-EC 

achieves better performance than SC-EEC in the objective 

Systems 
MCD 

(dB) 

BAPD 

(dB) 

F0 RMSE 

(Hz) 

V/UV 

error (%) 

SC-EC 6.70 4.34 41.16 13.26 

SC-EEC 6.76 4.40 43.35 13.66 

SC-EEM 6.52 4.23 39.74 13.32 

SE-EEC 6.74 4.40 41.30 13.17 

SE-EEM 6.51 4.34 39.07 13.25 

Table 1. Results of objective evaluations. 
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and naturalness evaluations, the subjective similarity results 

suggest that SC-EEC is significantly better than SC-EC. It 

implies that the emotion modeling with emotion code is 

trained to match the target speech signals, but in effect, is not 

trained to give the various expressional signal in comparison 

to the modeling with embedded emotion code.  

For all subjective evaluation, the performance of SE-

EEM is significantly better than that of other systems. These 

results suggest that the expressive speech from SE-EEM is 

the closest to the desired speaker and intended expression, 

and emotion representation from mel spectrogram can help to 

maintain the naturalness. Furthermore, SC-EEM achieves 

better performance compared with the other systems except 

SE-EEM, while SC-EEM shares a similar quality with SE-

EEM by employing mel spectrogram to model emotion 

identity. We can also see that the systems using emotion 

representation from mel spectrogram achieve better 

performance than those using the emotion representation 

from emotion code for both objective and subjective 

evaluations. It implies that mel spectrogram greatly affects 

not only emotion modeling, but also speaker modeling. 

 

4. CONCLUSION 

 

In this paper, we have investigated the performance of multi-

speaker emotional speech synthesis systems, according to 

speaker modeling method and emotion modeling method. 

Experimental results showed that the optimal architecture is 

CNN architecture using trainable speaker embedding and 

emotion representation from mel spectrogram which are used 

across the convolutional layers. By using emotion 

representation from mel spectrogram, we accomplish good 

quality for naturalness, speaker similarity, and emotion 

similarity.  

In future works, we would like to investigate the 

potential and possible improvement of the exploiting 

embedding representation to input for different layers. 

Further, we will try to apply style modeling method in [23], 

which augment a style token layer to the reference encoder, 

and investigate how global style tokens correspond to 

emotional meaning, respectively. Also, we plan to enable 

WaveNet vocoder to generate better steady voice, and further 

investigate the speech synthesis system based on mel 

spectrogram.  
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Fig. 2 Naturalness test result with their 95% confidence 
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